
DATABASE PERFORMANCE IMPROVEMENTS USING
TRANSPARENT PROXYING OF RELATIONAL DATABASES

Tonny Gregersen
�

Lars Chr. Hausmann
�

Peter Korsgaard
�

Claus Thomsen
�

�

Departmentof MedicalInformaticsandImageAnalysis,
Aalborg University

Abstract:
In the processof testing the hypothesisthat methodsusedin distributed systemscan be
usedfor improving a centralizeddatabasesystema proof-of-conceptimplementationof
a StructuredQuery Languageproxy is developed.The developedproxy is optimized for
systemswhich mainly performsearchqueries.A performancetestof the developedsystem
shows that methodsusedto ensurereliability andavailability in distributedsystemscanbe
usedto increaseperformancein systemswherethenumberof searchesexceedthenumberof
updates,herebyconfirmingthehypothesis.

Keywords:Database,Performance,Network, RelationalDatabases,SQL

1. INTRODUCTION

Thisarticledealswith theanalysis,design,implemen-
tation, and testing of a StructuredQuery Language
(SQL) proxy usedto optimizeperformanceandflex-
ibility of existing centralizeddatabasesystems.The
SQL proxy is developedin order to evaluatethe fol-
lowing hypothesis:Can methodsusedto ensure high
availability, high performance, andhigh reliability in
distributedsystemsbe usedto increaseperformance
andflexibility of an existingcentralizeddatabasesys-
tem,while not changingany elementsof the existing
system.

Themotivationfor theabovehypothesiscomespartly
from the performancelimits imposedby hardware
costson high endcentralizedsystemsandpartly from
the scalability andcost-efficiency of distributedsys-
tems(Schroeder,1994).However asnotedby Silber-
schatzet al. (1997, chapter16) the benefitsof dis-
tributedsystemscomesat thecostof increaseddevel-
opmentandmanagementcost.Reflectingontheabove
considerations,it is evidentthata systemwhichcould
benefitfrom distributedcomputingwithout theadded
costswould be a priority, and is as such the main
goal of this project.Throughoutthe article it should

be notedthat the project group haslimited this task
to systemswhich are inherentlysearch-intensive and
which hasa large numberof concurrentclients,such
assearchenginesfor theInternet.

At presenttime it has not been possibleto find a
similarproduct.During thisprojecttheauthorsof this
article haskept in touchwith the two foremostOpen
Sourceprojectsin thedatabasescene(thePostgreSQL
project (PostgreSQL,Org., 2000a)and the MySQL
project(MySQL, Inc.,2000a)),but noneof thesehave
beenable to show a competingsolution. It should
howeverbenotedthat theMySQL projecthasstarted
implementingfeaturesto enablesupport for a dis-
tributeddatabasesystem(MySQL, Inc.,2000b).Like-
wise PostgreSQLInc. is currentlyworking on build-
ing a distributeddatabasesystemon top of the Post-
greSQLdatabaseserver (PostgreSQL,Inc., 2000).

As shown in figure 1 the proposedsolution to the
hypothesisconsistsof aSQLproxydesignedto mimic
theinterfacesfor boththeclientandserverpartsof an
existing databasesystemandtherebyensuringtrans-
parency. The functionality of the proxy is centered
on distributing queriesfrom clients to the currently



Proxy

Client n

Client 1 Database 1

Database m

Server InterfaceClient Interface

Fig. 1. Basicstructureof theproxysolution

leastbusydatabaseserver, all while maintainingcon-
sistency of all databaseserversin thecluster.

In this article it will be shown that the proxy ap-
proachis ableto provideaperformancegainregarding
read-onlyqueriescomparedto anexisting centralized
database.It will also be notedthat this performance
gainis achievedat thecostof aperformancedegrada-
tion regardingmodificationsof thedatabase.

2. METHODS

From the presentationof the systemto be developed
thefollowing basicrequirementsaregiven:

� The systemshouldbe transparentto the clients
of thesystem.

� The systemshouldbe ableto handlecrashesof
databaseserversin thedatabasecluster.

In the following methodsto fulfill the requirements
mentionedabovewill bedescribed.

2.1 Distribution of data

Silberschatzet al. (1997, chapter18) suggeststhat
therearetwo principalmethodswhich canbeusedto
distribute dataamonga numberof sites,namelythe
techniquesof replicationand fragmentation.One of
thetwo techniquescaneitherbeusedexclusively, or a
combinationof bothcanbeused.

Usingreplication,datais mirroredonseveraldatabase
servers.Thishastheadvantageof increasingtheavail-
ability of data, since the systemmight continueto
operateafteroneor moredatabaseservershasfailed.
An addedadvantageis alsotheincreasedperformance
of searchesasthesecanbeconductedin parallel.On
theotherhandupdatesbecomemoreextensive,since
severaldatabaseservershaveto beupdated.

Fragmentationcanbedividedinto two sub-categories:
Verticalandhorizontalfragmentation.

� In vertical fragmentationthedatabaseis divided
into several sub-databases,eachcontainingone
or more relations.This has the advantagethat
updateson relationslocatedat a singledatabase
doesnot require the overheadof communica-
tion betweenthe databaseserversof thecluster.
Unfortunately, querieswhich requiredatafrom
severalrelationsbecomemoreextensive.

� Horizontalfragmentationdividesthe tuplesinto
severalsubspacesof thedatabase.Thiswayeach
databaseservercontainsanumberof tuplesfrom
eachrelation.Theadvantageof this typeof frag-
mentationis thatqueriesrequiringonly thesub-
setavailableon onedatabaseserver canbecon-
ductedwithout interactionfrom the rest of the
cluster. Furthermore,searchesin the database
canbe split into several sub-searcheseachrun-
ning in parallelon theserversof thecluster.

Whendesigningasystemin whichsomeorall dataare
replicatedamonga numberof hosts,a majorconcern
is to ensureconsistency of data.In singlesitesystems
dataconsistency canbe ensureby usingtransactions
(Weihl, 1994) and in distributed systemsby the use
of commit protocols (Silberschatzet al., 1997, p.
604-612).Performanceoptimization of the commit
protocolis howevernotof highpriority becauseof the
low numberof updatesexpectedin thetargetsystem.

2.2 Fault-tolerance

In a distributedsystemthe individual serverscanfail
independently. Failuresare by Schneider(1994) di-
vided into two types:Byzantinefailuresandfail-stop
failures.

� A systemexperiencingByzantinefailurescon-
tinuesits normalbehavior, but exhibits random
misbehavior at arbitrary moments.This is not
detectableby otherpartsof thesystem.

� A systemexperiencinga fail-stop failure stops
its normalbehavior, herebyallowing the failure
to bedetected.

To ensurethat thesystemis fault-tolerantandis able
to continueeven if someof the databaseservers in
the clusterfails, two differentmethodsto handlethe
failureof oneor moredatabaseserversin thedatabase
clusterwill be described.The describedmethodsare
thestate-machineandtheprimary-backupapproach.

The state-machineapproachis describedin morede-
tail by Schneider(1994).Thestate-machineapproach
is characterizedby the useof a decentralizedcontrol
structurein which the individual hostswork together
to ensuretheoverallconsistency of thecluster. This is
doneby formalizing the stateand commandswhich
changesthe stateof eachunique set of data items
within theclusterin whatis known asastatemachine.
The state-machinesand their correspondingdataset
arereplicatedamongthehostsof theclusterwith the
numberof replicasdeterminedby thedesiredleveland
typeof fault-tolerance.

Fault-toleranceandconsistency amongthereplicasof
eachdatasetis ensuredby the correspondingstate-
machinesupholdingthefollowing demands:

Agreement. Every non-faulty state-machinereplica
receivesevery request.



Order. Every non-faulty state-machinereplica pro-
cessestherequestsin thesamerelativeorder.

The agreementdemandcan be satisfiedby using an
agreementprotocolamongreplicasof thesamestate-
machine,whichensuresthat:

� All non-faulty replicasagreeon thesamevalue.
� A replica is only non-faulty, if all non-faulty

replicasuseits valueas the oneon which they
agree.

The demandof order can be satisfiedby using an
unique identifier for each request,such as a time-
stamp,and having the replicasprocessrequestsac-
cordingto theorderof theuniqueidentifiers.

The primary backupmethod is describedmore in-
depthby Navin BudhirajaandToueg (1994).Theba-
sic ideain primarybackupis thattheclientonly com-
municateswith one server, designatedthe primary.
Therestof theserversaredesignatedasbackupsand
they areupdatedby theprimary. If theprimaryfails a
failoveroccursin whichoneof thebackupstakesover
thejob of theprimary.

The primary-backupmethodinvolves lessredundant
processingand is lesscostly comparedto the state-
machinemethod.The cost for this is that when a
failure occursa requestcan be lost and additional
protocolsmaybeneededto solve thisproblem.

The two methodsdescribedabove canbe useto en-
surethe reliability criteria mentionedin the hypothe-
sis. Both methodsensuresfault tolerancein that the
systemcan keep running even though someof the
databaseserver in thedatabaseclusterfails.

2.3 Recovery

In casea server in theclusterbecomesavailableafter
experiencinga fail-stopfailure, it hasto be synchro-
nized with the cluster before it again can become
part of the cluster. This can be done using one of
severalrecovery techniques.Amongthesearethefull
stoptechnique,thetemporaryclienttechnique,andthe
log basedtechnique.The full stoptechniqueis taken
from (Silberschatzet al., 1997,chapter15), whereas
thetemporaryclient andthe log basedtechniquesare
developedfrom numerousexisting techniquesspecifi-
cally for thetaskat hand.

In thefull stoprecoverytechniqueall databaseservers
areput on hold while the crasheddatabaseserver is
updatedby makinga full copy of the databasefrom
one of the databaseservers which are currently on
hold.Thetechniqueis simple,but hastheunfortunate
propertythatnoneof thedatabaseserverscanbeused
while recoveringthecrashedserver.

In thetemporaryclienttechniquethecrasheddatabase
server actslike a client to thesystem.Thedatabaseis
recoveredby making requeststo the active database

servers. In order to keepconsistency all the updates
to theactivedatabaseservershaveto beperformedon
the recoveringserver aswell. This techniquehasthe
advantagethat it allows accessto the active database
servers while recovering the crashedserver, but this
advantagecomesat thecostof highercomplexity.

In the log basedrecovery techniquea log is kept
of all the updatesmade to the database.The log
contains information about which databaseservers
performedthe updateanda descriptionof the actual
update.Using the log a crasheddatabaseserver can
be recoveredto a consistentstateby searchingback
throughthelog, findingthefirst entrywheretheserver
exist in thelist of databaseservers,andgoingforward
throughthe log performingall the updatesstatedin
the log. The log basedrecovery techniquehas the
advantagethat it minimizes the restorationtime by
only performingthenecessaryupdatesto thecrashed
server andthat it doesnot needto performqueriesto
the active databaseserversopposedto the temporary
client technique.

Thethreemethodsmentionedabovecanall beusedto
restoreadatabaseserver in thedatabaseclusteraftera
failure.

2.4 SystemDesign

A list of requirementsweregiven in the introduction
and methodsneededto uphold theserequirements
werepresentedin thebeginningof this section.In the
following the choiceof methodswill be presentedas
a list of additionaldemandsto thedevelopedsystem.

� In order to maximize the performancegain of
searchqueriesthe systemshouldusefull repli-
cationof databetweenall serversin thecluster.

� The systemshould ensureconsistency of data
whenmodifying thedatabase.

� The systemshould be able to detect fail-stop
failures of the servers in the cluster, but not
Byzantinefailures as theseare consideredthe
responsibilityof theindividualdatabaseservers.

� Thesystemshouldnotbeableto restore
databasessubjectedto fail-stopfailure.

In orderto upholdall demandspresentedthe follow-
ing systemis designedand it will in this context be
presentedby its componentandprocessarchitecture.

Componentarchitecture Thesystemconsistof driver
modules for the three external interfaces (one in
the statusmoduleand two in the databasemodule),
a schedulermodule which distributes queriesfrom
clientsbetweenserversandmaintainsconnectionsto
the databaseservers,a daemonmodulewhich listens
for new connectionsfrom clients, and a connection
modulewhichhandlesconnectionsfrom clientsto one
or moreservers.Thesystemarchitecturecanbeseen
in figure2.



Daemon Connection Scheduler

StatusDatabase

Fig. 2. Themaincomponentsof thedevelopedsystem
andthereinter-modularcommunication

Processarchitecture In order to gain the desired
performanceimprovementregardingsearchqueries,
somepartsof the systemmustrun concurrently. The
neededthreadshavebeenidentifiedasbeing:

� A threadexecutingthe daemonmodulewaiting
for new connectionsfrom clients.

� A thread for each currently connectedclient,
therebyenableparallelscheduling.

� A threadfor eachhostgatheringstatusinforma-
tion.

Theconnectionthreadsareto be consideredthecon-
trolling threadsin the systemandassuchthe life of
a connectionthreadcanbeusedto illustrateall major
partsof thedevelopedsystem.

Thesystemperformsthefollowing actionsfor asingle
connection:

(1) A client connectsto the proxy. The daemon
moduledetectstheconnectionandspawnsanew
connectionthreadto handletheconnection.

(2) The connectionthreadreceivesusername,pass-
word and name of the databaseto which the
client want to connect. This is validated in
the schedulermoduleusingcachedinformation
aboutclients.If theuseris unknown a new con-
nectionto adatabaseserver is made.If theclient
couldnot beauthorizedtheconnectionis termi-
nated.

(3) A queryis readfrom theclientandexamined.
(a) If the query is read-only the scheduleris

askedfor a connectionto thecurrentlyleast
busy databaseserver with the samecreden-
tials asthe client usedfor login. The query
is thenforwardedto thedatabaseserverand
theresultreturnedto theclient. If no errors
occurredthedatabaseconnectionis returned
to the schedulerfor reuseby otherqueries,
otherwiseit is removed.

(b) If thequerymodifiesthedatabasethesched-
uler is askedfor aconnectionto all database
serversandthe affecteddatabaseis locked,
causing any other threads requesting to
update the databaseto wait. A thread is
spawned for eachdatabaseserver, and all
servers are updatedin parallel. After all
servershave beenupdated,the result is re-
turnedto the client, andthe databaseis un-
locked.Likein thecaseof read-onlyqueries
each connectionis either returnedto the
schedulerfor reuseor discarded.

(4) Step3 is repeateduntil the client terminatesthe
connectionor all databaseservershavecrashed.

2.5 Testspecification

In order to test the overall systemdesigna proof-of-
conceptprototypehas beenmade.The cluster was
build using PostgreSQL7.0.3 DatabaseManagers
(PostgreSQL,Org., 2000a),andassuchlargepartsof
the postgreSQLprotocol (PostgreSQL,Org., 2000b)
had to be implementedin order to mimic the inter-
faces.In addition to the databaseprotocol the de-
velopedsystemusedtheUCDavis implementationof
Simple Network ManagementProtocol (The NET-
SNMP Project, 2000) to gather status information
from thehostsin thecluster.

In orderto determinehow thedevelopedsystemscales
when increasingthe number of databaseservers a
performancetest hasbeenmade.The test hasbeen
conductedfor a variedratioof searchesandupdates.

Theperformancetestof thedevelopedproxyhasbeen
conductedonadatabasecontaining50000tupleswith
theattributesshown in table1.

Table1.Attributesusedin thetestdatabase.

Name Type Contents
id int (currenttuplenumber)
text varchar(255) this is row (currenttuplenumber)

of thedatabase

Thetwo typesof queriesare:

� select count(text) from test where text
like ’% N %’;

� update test set text=’this is row N of
the database1’ where id=N;

WhereN is a randomintegerbetween0 and49999.

Thetestwasperformedby measuringthetime it takes
to execute10 clientsin paralleleachperforming100
queriesto thedatabase.Fromtheresulttheamountof
queriesexecutedby secondwas calculated.The test
wasconductedusing0, 25, 50, 75 and100%updates
respectively.

Eachof the sub-testswasperformedthreetimesand
meanvaluewascalculated.Thetestwasperformedon
onedatabaseserverwithoutusingthedevelopedproxy
andonone,two andthreedatabaseserverswhenusing
thedevelopedproxy.

The performancetest was performedusing identical
computersas databaseservers. The computersused
wereequippedwith dualP3-500processors,128MB
RAM andwasplacedon a 100 Mbit switchedLocal
AreaNetwork.

3. RESULTS

Theresultsfoundduringthetestis shown in table2.



Table 2. Test results. The values shown
are the numberof queriesperformedper

second.

Updates Reference 1 host 2 hosts 3 hosts
0% 6.2 6.2 12.2 18.1
25% 6.1 6.0 6.5 6.3
50% 6.1 6.5 6.3 6.3
75% 6.4 6.3 5.9 5.5
100% 6.2 6.2 4.8 4.2

The test-valuesfound using the developedproxy is
shown in figure3 in relationto eachother.

Fig. 3. Testresultswhenusingthedevelopedproxy.

As it can be seenfrom figure 3 the performanceof
the developedproxy scalesalmost linearly with the
numberof useddatabaseswhen all the queriesare
searches.It can also be seenthat the performance
drops severely when increasingthe amountof per-
formed updates.By examining the valuesin table 2
it can be seenthat the developedproxy using up to
three databaseserves performsbetter than a single
site databaseserver, when the percentageof update
queriesare50%or less.It shouldbenotedthoughthat
this break-evenpoint would mostlikely changeif the
proxywereusedin systemswith significantlydifferent
queriesthanthetwo usedin theperformancetest.

Thereforeit mustbe concludedthat it is possibleto
improve performanceof searchintensive centralized
systemsusingtechniquesknown from distributedsys-
tems.

4. DISCUSSION

This articlehasproventhat it is possibleto usemeth-
odsfrom distributedsystemto improve performance
andflexibility of a centralizeddatabasesystem.How-
ever someareasof thedevelopedsystemhave poten-
tial for further improvement.Thetwo mostimportant
areasare:

� Updatesof thedatabase
� Ensuringfault tolerance

� Recoverymanagement

At presenttime thedatabaseis lockedon all database
servers in the clusterwhen an updateoccurs.After
the update is completed,the databaseis unlocked
again.Performancecan be increasedby using more
fine-grainedlocking, henceonly locking the affected
tables, not the entire database.This way multiple
updatesof the samedatabasecould take place in
parallel as long as updatesdoesnot affect the same
tables.Furthermoreamoreadvancedcommitprotocol
couldbeused.

In the currentsystema breakdown of the proxy will
causea breakdown of theentiresystem.Eitherof the
two methodsmentionedin section2.2 could be used
to ensurehigherfault tolerance.It would berelatively
simple to implementit as a primary-backupsystem
having aproxyrunningoneachdatabaseserversin the
clusterworking togetherasa primary-backupsystem.
If theprimaryproxy failsoneof thebackupscouldbe
electedasthenew primary, andthesystemwouldkeep
running.The problemwith this improvementis that
clients needto have somemeansof knowing which
servercurrentlyiselectedasprimary.Eithertheclients
have to bemodified,herebybreakingtherequirement
of the systemconcerningthat it shouldbehave trans-
parentlytowardsthe clients,or someexternalmeans
of distributionmustbeused.An exampleof thiswould
beadomainnameserverwhichcoulddirecttheclients
to theIP addressof thecurrentprimary.

At presenttime thedevelopedsystemdetectsfail-stop
failureswithin the databaseclusterand removes the
affected server from the list of available databases.
The developedsystemdoesnot provide meansfor
recovery other than manually coping the database
from anon-faultyserver to theaffectedserver. System
availability could be improved by utilizing one of
the recovery techniquesdiscussedin 2.3. All of the
suggestedrecovery techniquescan be implemented
withoutmajorredesignof thedevelopedsystem.

References

MySQL, Inc.
WWW: http://www.mysql.com/, 2000a.

MySQL, Inc. Thetodolist.
WWW: http://www.mysql.com/development/todo.html ,
2000b.

F. B. S. Navin Budhiraja, Keith Marzullo and
S. Toueg. The Primary-BackupApproach. In
S.Mullender,editor, DistributedSystems, chapter8.
AddisonWesley, 1994. ISBN 0-201-62427-3.

PostgreSQL,Inc. eRServer - PostgreSQLEnterprise
ReplicationServer.
WWW: http://www.erserver.com/ , 2000.

PostgreSQL,Org.
WWW: http://www.postgresql.org/ , 2000a.

PostgreSQL,Org. Frontend/Backend protocol used
by PostgreSQL.



WWW: http://www.postgresql.org/docs/programmer/protocol.htm

, 2000b.
F. B. Schneider. Repliction Managementusing the

State-machineApproach. In S. Mullender, editor,
DistributedSystems, chapter7.
AddisonWesley, 1994. ISBN 0-201-62427-3.

M. D. Schroeder. A State-of-the-ArtDistributedSys-
tem:Computingwith BOB. In S.Mullender, editor,
DistributedSystems, chapter1.
AddisonWesley, 1994. ISBN 0-201-62427-3.

A. Silberschatz,H. K. Korth,andS.Sudarshan.
DatabaseDesignConcepts.
McGraw-Hill, 3.edition,1997.ISBN0-07-114810-
8.

The NET-SNMP Project. The NET-SNMP Project
HomePage.
WWW: http://net-snmp.sourceforge.net, 2000.

W. E. Weihl. Transaction-ProcessingTechniques.
In S. Mullender, editor, DistributedSystems, chap-
ter13.
AddisonWesley, 1994. ISBN 0-201-62427-3.


