AALBORG UNIVERSITY

INSTITUTE OF ELECTRONIC SYSTEMS
DEPARTMENT OF COMMUNICATION TECHNOLOGY

Frederik Bajersvej 7 » DK-9220 AALBORG @

TITLE: Elevator Control System

Telefon 98 15 85 22

THEME: Software Development / Simulation

PROJECT PERIOD: 3rd semester, September to December 1998

PROJECT GROUP. 355

PARTICIPANTS:

Claus Albgge

Mads Grasbgll Christensen
Tonny Gregersen

Karsten Jensen

Peter Korsgaard

Lars Jochumsen Kristensen
Robert Stepien

SUPERVISOR;
Giedrius Slivinskas

PUBLICATIONS: 10

NUMBER OF PAGES. 143 pages
FINISHED: December 22nd 1998

Abstract

This report is the documentation of the
object oriented development of an ele-
vator control system test program. The
program performs a statistical evalua-
tion of the connected control system
through simulation of the passenger
flow and elevator mechanics in a buil-
ding. The user can set up the passen-
ger flow and elevator characteristics to
match actual conditions.

To test the functionality of the program
we have developed our own centra-
lized control system in JAVA.

This report may not be published or reproduced without the explicit permission of the authors.
Copyright (© 1998, project group D3-355, Aalborg University.

Preface

This report has been drawn up by project group D3-355 at Institute of Electronic Systems,
Aalborg University. The purpose with the project is to achieve and demonstrate skills in
object oriented analysis, design and programming. The report mainly apply to our super-
visor and censor and other students at Aalborg University.

The report contains five main parts and an appendix. Four parts constitute the docu-
mentation for analysis, design, implementation and test of our program. The fifth part is
our study journal were we reflect on our project course and the methods applied to it. The
appendix contain the account for scientific theories used in the project, a description of
parts of the progam we have opted not to treat thoroughly in our analysis and design and
source code for parts of the program.

Figures and tabulars are numbered in succession according to chapters. To benefit fully
from reading this report a basic knowledge to the method OOA&D, UML-notation and
the JAVA programming language is necessary. A java-doc documentation for all classes
can be found on the following url: http://www.kom.auc.dk/ jacmet/javadoc.

Aalborg, 21. december 1998

Claus Albgge

Lars Jochumsen Kristensen

Tonny Gregersen

Mads Graesbhgll Christensen
Karsten Jensen

Peter Korsgaard

Robert Stepien

Contents

I Analysis

1 Preliminary Analysis
11 PUrpoSe
1.2 System Definition
1.3 Surroundings
1.3.1 ProblemDomain
1.3.2 ApplicationDomain,
1.4 ASSUMPLIONS e

2 Problem Domain

2.1 Structure e
2.2 Classes e
221 Building
2.2.2 Control System
223 Schedule
224 Elevator
225 Floor
226 Container
2.2.7 Passenger
23 EventsandClasses

3 Application Domain
3.1 ACHOrS . . . e
3.2 Patternsofusage
3.3 Functions

3.4 Userinterface e

Design

Preliminary Design
4.1 AnalysisCorrections
4.2 Criteria e

Technical Platform

51 Equipment.
52 BasicPrograms
5.3 Systemsand Devices
54 DesignlLanguage

Architecture
6.1 Componentarchitecture
6.2 PrOCESSES v e

Sim-elevator

7.1 Model Component
7.1.1 Structure L
7.1.2 Passenger Movement
7.1.3 Passenger
714 Container
7.15 Elevator
7.16 QUEUE e
717 Pool
7.1.8 Floor

7.2 FunctionComponent
7.2.1 Destination Manager
7.22 TimeManager
7.2.3 StatisticEvaluation oo

7.3 Userinterfacecomponent oL
731 OVerview e

23

25
25
25

27
27
27
27
27

28
28
28

10

732 File
733 Setup
7.3.4 Simulation
7.35 Statistics
736 Help.
7.4 System interface component
741 SystemManager

Control System

8.1 Model Component
8.1.1 Structure
8.1.2 Control System
8.1.3 Control System OQutput

8.2 FunctionComponent

8.3 System Interface Component
83.1 Protocol

Program Flow

9.1 Create Passenger
9.2 PassengerEvent
9.3 ElevatorEvent.

Implementation

Implementation

10.1 ClassStructure
10.2 UserlInterface
10.3 Model Component (Simulation)
10.4 Model Component (Control System)
10.5 Function Component
10.6 Systeminterface

41
41
41
41
41
42
43
43

44
45
46

49

Iv Test

11 Test
11.1 TestStrategy e
11.2 White Box
11.21 Method
11.2.2 ElevatormovePassenger
11.23 FlowGraph
11.2.4 Indentification of IndependentPaths
11.25 TestCases. v v i i
11.3 BlackBox e
11.3.1 Method
11.3.2 PerformingTheTest

v Study Journal

12 Study Journal

12.1 Method
12.2 Programming Tools
12.3 The Working Process

12.3.1 TimeSchedule

12.3.2 GroupDecisions
12.4 Choosingthe Project
125 Analysis

12.5.1 Defining The System
12,6 Design e

12.7 Implementation
128 Testing
12.9 EXperience

vi Appendix 75

13 Statistics 77
14 Elevator mechanics 79
15 Control System evaluation 83
15.1 General Description 83
15.1.1 Time-Value 84

15.1.2 Complexity 86

15.1.3 Directions 87

16 Screendumps 88
17 Abstracts from Sourcecode 93
17.1 Tonny Gregersen o v i i e 93
17.2 Karsten Jensen e 101
17.3 Mads Graeshgll Christensen 110
17.4 RobertStepien 117
175 Claus Albgge 125
17.6 Peter Koorsgaard 131
17.7 Lars Jochumsen Kristensen 137

Part |

Analysis

Chapter 1

Preliminary Analysis

1.1 Purpose

The computer system is intended for use in an elevator control system company. The
purpose is to help the user configuring, adapting and testing elevator control systems in
multiple floor/elevator buildings, according to time efficiency, economy, etc. The user
should be able to give environment-specific variables characteristic to the actual building,
thus he should not be able to edit the main algorithm or create a new one, but the system
must enable him to alter the parameters used in the algorithm. To test and measure the
results of the configuration without actually installing the system in a building, a simula-
tion of a given passenger flow will be included. It should be possible to change the flow
of people in the building in order to simulate rush hours, etc.

1.2 System Definition

Conditions: A computer system for users with various qualifications.

Application domain: Adaption of an elevator control system to specific environments
by a technician.

Technology: Java-console based on JDK 1.1.6 (PC-platform).

Object system: Elevators, passengers, floors.

10

Functionality: Adjustment and test of the elevator control system with a finite number
of parameters.

Philosophy: Modification and integration.

This leads to the following system definition:

The system is a tool for users with various qualifications to adapt an elevator control
system to specific environments. The tool includes a simulation of both the elevator
system and the passenger circuit in it. The user will be able to adjust a finite number of
parameters according to a number of quality measurements. The computer system must
support the user in modification and integration of the elevator control system. It will
be based on a Java-console, and will run on a PC-platform

1.3 Surroundings

1.3.1 Problem Domain

i
e

Figure 1.1: Overview showing the computer systems surroundings.

The computer system is a system to test an algorithm, with different parameters for an

elevator control system. The algorithm simulate the elevator movement in a building with
multiple floors and elevators.

11

To measure the quality of an algorithm you have to be able to register the travel time
of each passenger in the passenger flow of the building. This makes it possible to make
different statistic evaluations of the time used by the algorithm to move the passengers
to their destination. Using the statistic evaluations it is possible to compare the algo-
rithm with different parameters and thereby choosing the most efficient configuration of
the elevator control system. Figure 1.1 shows an overview over the computer systems
surroundings.

1.3.2 Application Domain

The computer system is a tool to find the most efficient configuration of an elevator control
system. It can be used in two different kinds of environments:

¢ An already existing building with some predefined parameters for the elevator sys-
tem.

e A non-existing building without predefined parameters for the elevator system.

It is possible to create a passenger flow like the one in the building, where the elevator
control system is to be installed. This includes creating a passenger flow that simulates the
peak flow of passengers between the floors and the time cycle of the passenger movement.
When the passenger arrives at the destination the travel time is stored for later use in
the statistic evaluation. Then the passenger continues in the passenger flow with a new
destination and departure time. This results in a more realistic simulation of a passenger
flow.

The elevator control system is based upon a general algorithm, which can be adjusted
by the user of the computer system. The system specifies how the user can alter some
parameters and thereby optimize the algorithm that is used in the elevator control system.
The parameters in question will be those defining the relation between the waiting time
for passengers on the floors and the travel time in the elevators. If the travel time for each
elevator is reduced, the waiting time on the floors is increased and vice versa

It is possible to optimise the algorithm on the same passenger flow using the statistic
evaluation to determine the parameters

12

1.4 Assumptions

In our work with the simulation we have made the following assumptions in order to
simplify our problem domain models:

e People do not use stairs.

The elevator system does not break down.

The elevator motor is very simple.

The motor supplies constant acceleration.

The movement of the elevators is not affected by the load.

13

Chapter 2

Problem Domain

2.1 Structure

Figure 2.1 shows the coherence of the problem domain classes.

2.2 Classes

2.2.1 Building

The building (Figure 2.2) is an aggregation of the physical environment in which the
elevator system exists and the passengers circulate.

2.2.2 Control System

The control system (Figure 2.3) handles all input regarding the elevator system and con-
trols the destinations of the elevators.
To initialize the evaluation, one of the three following events have to appear:

o Elevator called: When a passenger invokes an elevator, the control system evalu-
ates all schedules and selects, to which elevator schedule the destination should be
added.

e Elevator ready: When an elevator is empty and ready to receive a new destination, it
sends the elevator ready signal to the control system. Then if there is any destination

14

Biuiilcling cantrol system

=

1

1[b2 98 1.8

Pool Queve Elesator SChecube
1 1 1
n*
Passenger

Cortainer

T

[[I

Powl Queve Elewator

Figure 2.1: Structure diagram.

pending, the control system evaluates and adds a new destination to the elevator
schedule.

e Destination selected: When a passenger selects a destination, from inside the eleva-
tor, the control system evaluates the local elevator schedule, and adds the destination
according to the algorithm.

2.2.3 Schedule

Each elevator has a schedule (Figure 2.4) containing future destinations. Only the control
system can change the schedule.

15

Building destroyped

Builcling crested
.—{ In existence

Aftribwtes

-Type af building
-Ligt of floors

-Ligt of slevators
~Mumber of floars
-Mumber of slevators

Figure 2.2: Building state diagram.

Building =
—_— destroyed
created Elevator calle 4
- > : O
Elewator ready
Waiting Destination Gratumiang
selected -
M ——
Schedule not changed
Schedule changed

Attrbutes
- &l elevator system
properties

Figure 2.3: Control System state diagram.

2.2.4 Elevator

An elevator (Figure 2.5) is a container that moves passengers from one floor to another.
It represents a real-life elevator but the mechanical properties of the elevator system (e.g.
engine, wires) are also embodied in the elevator.

2.2.5 Floor

Each floor (see Figure 2.6) consists of a pool and two queues.

2.2.6 Container

The container class (Figure 2.7) embodies the general passenger circuit related properties
of queue, pool and elevator such as methods for moving passengers and lists of contained

16

Schedule changed

Building created j m i

Adtrib utes
-Elewator
-List of destination

Figure 2.4: Schedule state diagram.

passengers.

A queue is a specialization of a container. Passengers waiting for an elevator wait in a
queue on a floor. Each floor contains two queues, up and down.

The pools represent the whereabouts of the passengers, when they are not in the queue or
the elevator, be it in an apartment, office, or store.

2.2.7 Passenger

The passenger (see Figure 2.8) is the entity that circulates in the building and is used for
statistical evaluation (measurement) of the performance of the elevator system.

2.3 Events and Classes

Figure 2.9 shows the events and respective classes.

17

Elevator Schedule

ready changed s
Buiding Buildng
created destroyed
® Coing for the "’@

next destination

Loading/
unloading

Elewvator ready passengers Elewrator arrived
Passenger moved from Passenger moved from
elevator to pool queue to elevator

Attributes:
-ID
-Postion

W eight

Figure 2.5: Elevator state diagram.

Builcling crested
.—{ In existence

Aftribwtes:

- Pool

- Up-gueue

- Doy r-cpuieLe

Building destroyped

Figure 2.6: Floor state diagram

Passenger moved
[Fool -» Queue]
[Queue->Elevator]
[Elevator->F oal]

Contamer O O O Container
created destroyed
.—{ In existence j—a@

Attributes:
-Hext container

Figure 2.7: Container (Pool, Queue, Elevator) state diagram. See also the elevator state
diagram.

18

Buiding

created

._

In edstence

)

Passenger moved

Building
destroyed

—®

Attributes

<ID

-Time of departure
-Tune of arrivel
-Destination

Figure 2.8: Passenger state diagram.

Events/Classes

Schedule Elevator Passenger

Queue

Pool

Control System

Elevator called

*

Elevator ready

*

Elevator arrived

Destination selected

Schdule changed

Passenger moved from Elevator to Pool

Passenger moved from Pool to Queue

Passenger moved from Queue to Elevator

Destination added

Destination deleted

Figure 2.9: Events and classes.

19

Chapter 3

Application Domain

3.1 Actors

There is only one user of the system. The following goes for him:

e Purpose
A person who intends to adapt the given control system to a specific environment
by setting up and simulating the passenger flow and adjusting the parameters in the
control system algorithm.

e Characteristics
The ability to obtain the mechanical properties of the elevator system (e.g. motor)
and the building must be possessed, also the person must understand a statistical
evaluation.

e Example
A technician who is going to install the control system in a building. To make
the elevator system run efficiently he must adapt the control system to the specific
environment as defined by the user.

3.2 Patterns of usage

These patterns apply to the user:

e Adaptation of Algorithm
Before the simulation is started, the physical properties of the building and the

20

Function Complexity Type
Parameter Adjustment Medium Update
Run Simulation Hard Calculation
Show Simulation Results | Medium Read

Figure 3.1: Functions

elevator system is entered and the algorithm is adjusted to fulfill demands set by the
user. The time efficiency is optimized through changes made in floor priorities and
the travel time for the elevators.

e Passenger Flow Control
The user defines the statistical behaviour of the passengers, thus making simulation
of certain building types possible.

e Statistical Evaluation
After the simulation has been run, a statistical evaluation is presented to the user as
a measurement of the performance of the control system as set up by the user. This
evaluation may e.g. include average travel time for each passenger and performance
of each elevator.

e Iteration
After the statistical evaluation, the process can be iterated, until the most optimal
configuration has been achieved.

3.3 Functions

Figure 3.1 show the functions and their complexity and type.

3.4 User interface

The user should interact with the program in connection with parameter adjustment through
a graphical user interface. In Figure 3.2 it is shown what this GUI may look like. Also
the statistical evaluation of the simulation should be presented through GUI or optionally
on a printer!

21

File Setup Simulation Statistic Help
; Show
o
MNew Building Start slalistics About
Cpen Elevator Stop
Save Passenger Pause
Save as Algorthm
Ewit Statistics
Building Setup
Type
No. of Elevators
No. of Flpors
Remarks
Creator
OX Cancel
Next Help

Figure 3.2: Graphical user interface.

22

Part I

Design

23

Chapter 4

Preliminary Design

4.1 Analysis Corrections
The following amendments have been made to the analysis:

e The class Schedule has been removed from the structure diagram. It now exists as
different attributes (lists of destinations) in several classes.

e Two classes, Control System Output and Passenger movement, was found when
restructuring the state diagrams.

e |t has been made more explicit that the control system and the simulation of the
passenger flow are separate units. The simulation unit (SimElevator) and the control
system unit are seen as actors using the other system. To handle this interaction two
more classes, System Manager and Protocol, were added.

e The graphical user interface has been specified.

4.2 Criteria

Figure 4.1 shows the design criteria. The purpose of setting the design criteria is to get
the priorities straight within the software development team.

To minimize the consequences of possible errors due to our inadequate knowledge of
the physics of elevator systems the system must be designed flexible by extensive use of
encapsulation.

25

Criteria Very important Important Less important Irrelevant Triviality
Useful X
Secure X
Efficient X
Correct

Reliable

Maintainable
Testable

Flexible X
Understandable X
Reusable X
Movable X
Integratable X

X| X[X]|X

Figure 4.1: Design criteria.

The importance of the system being integratable is based on the whole idea of the simu-
lation - To test a control system algorithm, in principle an external system.

26

Chapter 5

Technical Platform

5.1 Equipment

The system is intended for use on a PC, but the platform will de facto be decided by JDK
1.1.6 compability and availability. It will be developed on PC-UNIX-terminals using the
university facilities.

5.2 Basic Programs

Sun’s JDK 1.1.6 will be used in the development. Also a basic text editor is required.

5.3 Systems and Devices

Besides a PC with standard equipment a JDK 1.1.6 compatible Java-console, a GUI-
system, is needed, e.g. Windows 95/98/NT, X11, to run the program. Java Runtime
Environment (JRE) is a Java virtual machine containing all you need to run the program.
It can be downloaded at http://www.java.sun.com.

5.4 Design Language

The design language is generally based on the notation used in the OOA&D book by Peter
Axel Nielsen et al.

27

Chapter 6

Architecture

6.1 Component architecture

Due to the fact that this is a program intended for test of a specific control system algo-
rithm the control system is seen as an independent component with an interface to the
simulated environment. Figure 6.1 show this dyarchic component architechture.

The design phase thus contains two parts. A part involving the simulation domain, and
one concerning the control system. The simulation component has a system interface to
the control system unit and a user interface. The control system unit has a system interface
to the simulation component.

You must be able to extract the control system unit and use it in a real-life elevator system.
The design of the system interfaces shall make this possible.

6.2 Processes

We have opted not to use multiple threads.

28

LML PO BALEAS Yo LMD

PALEAS WORANDD

WILSAS TOULNOD
TBaon

¥

»

30V BN FELSAS

aIDHISE S ol MELWOD B0
. NG
| o
HALRN AT
A3 -3 ALL LSS
SNOLLON
¢
i
Esd F=T0)
35N

LINM MILEAS IOHLNOD

HOL¥AIIIWIS

Figure 6.1: System architecture.
29

Chapter 7

Sim-elevator

7.1 Model Component

7.1.1 Structure

By substituting iterations in the state diagrams of the analysis document with classes (or
attributes), we get a new structure diagram, Figure 7.4. The process of substituting the
iterations lead to restructured state diagrams.

Building

created

I

Passengzer movement

In existence

U

Fassenger
moved

Building
destroved

Figure 7.1: Restructured container state diagram.

7.1.2 Passenger Movement

Figures 7.1 and 7.2, showing the restructured state diagrams of the container and passen-
ger classes, lead to the conception af a new class containing information on each move-

30

Pazsenger movement

. Enilding
- destroyed

created
P
In container &

Passenger moved

Figure 7.2: Restructured passenger state diagram.

ment of a passenger, called Passenger movement. This class is useful in connection with
the statistical evaluation. It makes it possible to reconstruct the exact movement of a given
passenger as a function of time.

e Purpose: Registration of passenger movements
e Attributes: Passenger ID, Time of movement

e Operations. N/A

7.1.3 Passenger

e Purpose: contains data for a passenger

e Attributes: ID number,group ID, List of movements (reference to passenger move-
ment), last movement, destination, time of departure (when passenger moves from
pool to queue), Passenger state (indicates if passenger has a new destination)

e Operations. setNewDestination(int Destination) (update passenger destination and
departure time),
LogPassengerMovement(double ActualTime, int ContainerID) (Add an object of
passengerMovement with parameters to the end of a list of passenger movements),
getActionTime() (returns passenger arrival time)

7.1.4 Container

e Purpose: Move passengers to next container
e Attributes: List of Passengers, No. of Passengers, Next Container, ID

31

e Operations. MovePassenger(Passenger PassengerToMove) (move a passenger ob-
ject from one container to another),
AddPassenger(Passenger AddPassenger) (Add a passenger to the list of passen-
gers),
DeletePassenger(Passenger DeletePassenger, Passenger TestPassenger) (Deletes a
passenger),
setNextContainer(Container SetNextContainer) (reference to next container),
getContainerID() (returns containerID),
getCommand() (returns the command to be executed by the observer)

7.1.5 Elevator

Building

ereated

Control system wwocation

Elevator loadmghinloading

oing for the next
destination

Elevator
ready

U 3 U

wmoved

Elevator
ready

Figure 7.3: Restructured elevator state diagram.

In figure 7.3 you see the iteration Elevator ready. It has been substituted by an attribute in
the elevator class called state.

e Purpose: Move passengers between floors

e Attributes: ID number, next destination, list of unprocessed destinations, state
(ready/not ready), max capacity, actual capacity

e Operations. setDestination(int NewDestination) (update elevator destination),
setUnprocessedDestinationFlag() (Notify observer (System Manager) with unpro-

32

cessed destination),
setElevatorReadyFlag() (notify observer (System Manager) with elevator ready),

7.1.6 Queue
e Purpose: Signals that a passenger needs an elevator
e Attributes: Next Container
e Operations. setinvokeElevatorFlag() (notify observer (System Manager) with call

for an elevator)

7.1.7 Pool

e Purpose: Contain passengers when they’re not circulating in the elevator system
e Atributes: N/A

e Operations. getNewDestination(Passenger NewPassenger) (notify observer (Des-
tination Manager) to get new passenger destination),
getPassengerToMoveObiject() (returns reference to the passenger entering pool)

7.1.8 Floor

e Purpose: Connects the different Containers on each Floor
e Attributes: ID, References to pools and queues

e Operations. N/A

7.2 Function Component

Specifying operations and placing them in classes, it has been found that a function com-
ponent is needed in the simulation unit. The function component contains three classes:
Destination Manager, Time Manager and Statistic Manager.

33

Biuiilclirg ™Y cantrol system

1

cantrol system
output

1] b2 1.%

Fool e Elessaar

1 1 1
ok i

Passenger

1
a.*

Passenger moverment

Container

T

[[l

Pl Gueve Elesvatar

Figure 7.4: Model component structure diagram with new classes. Note that both the
building model component and the control system component are included.

7.2.1 Destination Manager

e Purpose: Set up all passengers with destination and departure time, during initiali-
sation, give new passenger destinations and departure times during simulation

e Attributes: Passenger flow algorithm

e Operations. N/A

34

7.2.2 Time Manager

e Purpose: Manage critical moments (events in the simulation like Passenger moved,
Elevator arrived, etc.) and execute necessary tasks at these moments

e Attributes: List of Passenger events, List of Elevator events

e Operations. AddPassengerEvent(Pool PoolObject, Passenger PassengerToAdd),
AddElevatorEvent(int ElevatorID, double ActionTime, int Direction)

7.2.3 Statistic Evaluation

e Purpose: Calculate statistics and extract the results
e Attributes: All Passengers

e Operations. CalculateAverage() (Calculate average travel time per floor traveled),
CalculateSD() (Calculate standard deviation in travel time per floor traveled),
calculateCycles() (transform passenger movements into cycles)

7.3 User interface component

7.3.1 Overview

The user interface includes two kinds of elements. The simulation is set up through a
number of windows, and the statistic results of the simulation are shown in a transcript.
A menu, common for all the windows, allows the user to navigate between the windows.
Below is a description of the functionality of the menu items.

7.3.2 File
New

Activates the setup windows in the following order: Building setup, Elevator setup, Pas-
senger setup and Parameter setup.

35

Eg% Elevator simulation Application

Figure 7.5: The pull down menu Files.

Open

Read the setup of a simulation from a disk. A file dialog box with options is shown.

Save

Save the setup of the actual simulation on a disk.

save as

Save a copy of the actual simulation on a disk. A file dialog box with options is shown.

Exit

Exit the program.

7.3.3 Setup
Building

Opens the window, where the setup for Building is specified. Allows changes to be made
in the Building setup.

36

Eg_;a Elevator simulation Application

Setup

Figure 7.6: The pull down menu Setup.

Elevator

Opens the window, where the setup for Elevator is specified. Allows changes to be made
in the Elevator setup.

Passengers

Opens the window, where the setup for Passenger is specified. Allows changes to be made
in the Passenger setup.

Parameter

Opens the window where the parameters for the algorithm are specified. Allows changes
to be made in the Parameter setup.

Statistics

Opens the window where the setup for the calculation of statistics is specified.

7.3.4 Simulation
Start

Opens the window where the period to be simulated is set and the simulation is started.

37

[%g Elevator simulation Application

Simulation

=

Figure 7.7: The pull down menu Simulation.

Stop

Stops a running simulation.

7.3.5 Statistics

[Elevator simulation Application

Figure 7.8: The pull down menu Statistics.

Show Statistics

Shows a transcript of the results of the calculation of the statistics .

38

7.3.6 Help

Figure 7.9: The pull down menu Help.

About

Opens the window with program information.

7.4 System interface component

7.4.1 System Manager

e Purpose: Manage the exchange of data between Sim-Elevator and the Protocol in
the Control System Unit

e Attributes: Objects of Building, Time Manager, Elevator, Queue and Protocol

e Operations. N/A

39

EE Exit —

—@)

l | T — Rl YYindowe Open
W setup icacled PR S—
Pl
, - Tence
Bulbbing seup |
Cancel
Coros
Elevater setp Onead
L- Hazsenger setup !
i
|_. Faramatar st Jip=n
———— B sela
¥ Pz Sl
o i
Bugding setug:
ANCE 08, el
SENE R
Elzrrator a2t
X — e —| Sk A%
:—Cmcol—
Elevstor st |
i
1 ¥ L hd
e
I w e 'ﬂtm 3
O S e o (T — ;)
Fd ain WYindoae - ——— Al
— i ——
e Hetup: Taciad
Pacsencer selup "
Run
Exit
Faramnster 2eE
[l : -
‘:.I ... A’ [.(m SI”'I.JE(O']
R
oK
Farareter sebup Caneel Fhosy vitistioe——
A ; Slatisticsl
VYN doan ek ——| EEAT
o, Est SR Vndow evauaton

Figure 7.10: Navigation diagram for the user interface. The diagram shows three typical
states for the main window on a vertical time axis with the earlier states on top and the
later downwards. In the later states options in the earlier are still intact. This is not shown
on the diagram.

40

Chapter 8

Control System

8.1 Model Component

8.1.1 Structure

The structure of the control system model component is depicted in Figure 7.4.

8.1.2 Control System

e Purpose: Adds and removes destinations from lists of destinations, evaluates order
of elevator movements

e Attributes: State, List of Moveable Destinations, List of Control System output

e Operations: AddMovableDestination(Destination Dest,Elevatorinfo[] Elevatorin-
formation) (Adds a new movable destination (passenger destinations in queue)),
AddStaticDestinations (Adds a new List of Static Destinations (passenger destina-

tions in elevators)),
DeleteDestination(Destination Dest, int ElevatorNumber,Elevatorinfo[] Elevatorin-

formation) (Deletes a destination)

8.1.3 Control System Output

By restructuring the control system state diagram (see Figure 8.1) we get a new class
called control system output. The class contains the result of the evaluation algorithm in

41

Building

created

I

Control systerm ountput

Elevator called

Waiting Evabuating

Destmatmn selected

Bulding
destroyed

v

Sehedule changed
(st of destmations)

Figure 8.1: Restructured control system state diagram.

the control system in the form of lists of destinations for the elevators.

e Purpose: Supply the control system with methods to calculate new destinations for
the elevators

e Attributes; List of static destinations, List of sorted destinations

e Operations. addMovableDestination(Destination Dest, Elevatorinfo Elevatorin-
formation) (adds the given movable destination to the ControlSystemOutput object
at the position which gives the lowest TimeValue and follows the given guidelines),
addStaticDestination(Destination Dest) (adds the given static destination to the Con-
trol System Output object),
setScheduleChanged() (notify observer (Protocol) with schedule changed), getNewDes-
tination() (returns new elevator destination)

8.2 Function Component

The control system main component does not contain any function component, all func-
tions are implemented through the system interface component or are contained in the
model component.

42

8.3 System Interface Component

8.3.1 Protocol

e Purpose:Manage the exchange of data between Sim-elevator and the control sys-
tem

e Attributes; N/A

e Operations. addMovableDestination(Destination Dest,double ActionTime) (add
destinations for passengers in elevators),
addStaticDestination(ListOfDestinations DestinationL.ist, int ElevatorNumber,double
ActionTime,double ArrivalTime) (add destinations for passengers in queues),
setScheduleChanged() (notify observer (System Manager) with schedule changed),
getNewDestination() (returns new elevator destination), getNewActionTime() (re-
turns the elevator arrival time),
setElevatorReady(double ActionTime,int ElevatorNumber) (update ElevatorReady

flag),

43

Chapter 9

Program Flow

9.1 Create Passenger

Figure 9.1.

When the simulation is started an object of the class Destination Manager is instantiated.
The movement of the passenger is defined for groups of passengers through the setup in

the user interface.

1. Call setDestination in Passenger to set the first passenger destination.

2. Call addPassenger in Pool to add the passenger to list of passengers.

3. Call addPassengerEvent in TimeManager to add the passenger to list of passenger

events.

Destination !

k.

Manager

k|

t

)

Faol Time Manager

Fassenger

Figure 9.1: Create passenger.

44

G

14

System 11—
E M anager 13— Protocol L=
™ 10 -) |
B
¥ i #
Time Manager 3 4 12 Contral System 9 &8
"—‘ i ;
1 7 |
J‘ ¥ F 4
Containar Contral System"
Paol }>2—|- (Queue) ‘ Elewatar ‘ Output

Figure 9.2: Passenger event.

9.2 Passenger Event

Figure 9.2.
Passenger departure time.

1. Call setNextContainer in Pool to set the next container.
Call movePassenger in Pool to move the passenger.

2. Call addPassenger in Queue to add the passenger to list of passengers.
Call setinvokeElevatorFlag in queue to invoke an elevator.

3. Notify observer (System Manager) with setinvokeElevatorFlag.
4. Call getContainerID in Container to get the floor number for the invokation.
5. Call addMovableDestination in Protocol to get the invokation processed.

6. Call addMovableDestination in Control System to get the destination added to list
of elevator destinations.

7. If the first destination in list of elevator destinations is changed: call setSched-
uleChanged in Control System Output.

8. Notify observer (Protocol) with setScheduleChanged.

9. Call getNewDestination in Control System Output to get the new elevator destina-
tion.

45

Destination
Manager

Time Manager

Passenger = F

10.
11.
12.
13.

14.

9.3 Elevator Event

Figure 9.3.
The elevator arrives at a floor.

Poal

2 —

11—
System 'E1 — Protocal
Manager 16 o
[9 [9 '|
e | R 12
- 91018 Control Svstem
|
13
y)
Control System
Ekevatar Output b
t |
8 7
Queue

Figure 9.3: Elevator event.

Notify observer (System Manager) with schedule changed.
Call getNewDestination in Protocol to get the new elevator destination.
Call setDestination in Elevator to set the new elevator destination.

Call getNewActionTime in Protocol to get the elevator arrival time.

1. Call MovePassenger in Elevator to unload and load passengers.

2. Call addPassenger in Pool to add the passenger to list of passengers.

3. Notify observer (DestinationManager).

4. Call getPassengerToMoveObject in Pool

46

5

14

Call addElevatorEvent in TimeManager to add the next elevator arrival time.

10.

11.

12.

13.

14.

Call getActionTime in Passenger and calculate the new destination.
Call setNewDestination in Passenger to set the new destination and depaturetime.

. Call addPassengerEvent in TimeManager to add the passenger event to list of pas-

senger events.

. Call movePassenger in Queue to load the passenger from the queue to the elevator.

If passengers are loaded call setUnprocessedDestinationFlag in Elevator.
If no passengers are loaded call setElevatorReadyFlag in Elevator.

Notify observer (System Manager) with either setElevatorReadyFlag or SetUnpro-
cessedDestinationFlag.

If setElevatorReadyFlag (9)

Call getCommand in Elevator. getCommand returns ElevatorReady.

If setUnprocessedDestinationFlag (9)

Call getCommand in Elevator. getCommand returns UnprocessedDestination.

If setElevatorReadyFlag (9)

Call setElevatorReady in protocol.

If setUnprocessedDestinationFlag (9)
Call addStaticDestinations in protocol.

If setElevatorReadyFlag (9)

Call deleteDestination in ControlSystem to delete the elevator destination.

If setUnprocessedDestinationFlag (9)

Call addStaticDestinations in ControlSystem to add the passenger destinations to
the list of elevator destination.

If setElevatorReadyFlag (9)
Evalaute the list of destinations and call setScheduleChanged in Control System
Output.

If setUnprocessedDestinationFlag (9)
Evalaute the list of destinations and call setScheduleChanged in Control System
Output.

47

15.

16.

17.

18.

19.

20.

21.

Notify observer (Protocol) with schedule changed.

Call getNewDestination in Control System Out to get the new elevator destination.
Notify observer (System Manager) with schedule changed.

Call getNewDestination in Protocol to get the new elevator destination.

Call setDestination in Elevator to set the new elevator destination.

Call getNewActionTime in Protocol to get the elevator arrival time.

Call addElevatorEvent in TimeManager to add the next elevator arrival time to list
of elevator events.

48

Part 1ii

| mplementation

49

Chapter 10
| mplementation

This chapter describes the steps taken to convert the design into a JAVA program.

The program only uses classes and methodes from Sun’s JDK 1.1.6.

This makes it possible to execute the program on different platforms.

This version of the program is tested succesfully on both a PC- and a UNIX platform.
The use of standard JDK classes makes the program able to load and save files using the
file dialog implemented in the platform.

There are different ways of implementing the program. The order of the implementation
determine the amount of extra sourcecode to be implemented in order to test the
different classes as they are implemented. A combination of early user interface

and button-up implementation, gives a graphic test platform and a small amount of

extra test-sourcecode to be implemented.

Some parts of the program have not been implemented, specially parts of the GUI have
been let out. E.g. only four passenger flows have been implemented though this is enough
to show the funtionality of the program. The edit function in the GUI is not needed to
show the functionality of the program and therefore not implemented. The statistic part
of the simulation is not fully graphicly implemented.

10.1 Class Structure

The different classes described in the design chapter is implemented by the members of
the group. Each member is responsible for the implementation
of a number of classes. To make sure the communication between the classes is

51

in agreement with the design, each public method were designed with a contract defining
what is required and what has to be insured through the communication and functionality
of the method.

By fulfilling these contracts it should be possible to implement all the classes

into one program.

The order of implementation is as follows:

Userinterface

Model component (Simulation)

Model component (Control system)

Function component

System interface between the simulation and the control system.

10.2 User Interface

The userinterface is controlled by the use of pulldown menus and consist of a
number of windows to change the setup of the program.

Userinterface

SimElevator About

BuildingSetup

ParameterSetup

ElevatorSetup

PassengerSetup

InithAenu

SetupSpinText

ReadObjectFile

WriteObjectFile

RunSimulation

SetupSpinText-
Double

Figure 10.1: Userinterface Component.

Each menu item is implemented as a class. (See Figure 10.1) This makes it easy to
implement and test one window at a time. Each

window is an unit with its own actionlistener, this makes it possible to add or remove a
window without too many changes in the other user interface classes. The class containing
a GUI interface has the

responsibility of saving the data specified on the GUI. The class DataContainer keeps
track of all parameters specifying a simulation.

The parameters from BuildingSetup is saved as attributes to the DataContainer class.
These data is used to limit some of the other parameters e.g. Start Floor of a passen-
ger is limited to the number of

floors in the building. The parameters of the elevators (ElevatorSetup) is saved in an
array of ElevatorData objects, one for each elevator in the building. The array is an
attribute of the class DataContainer. The parameters of the ParameterSetup are attributes
of ElevatorData too and will be added to each ElevatorData object.

The most complex GUI is the PassengerSetup. It consist of two windows. The first
GUI of the PassengerSetup is used to specify the group. The second GUI depend on the
type of travel performed by the passengers of the group. This GUI is based upon three
GUIs containing specification of the passengers timetable, and three GUIs containing the
specificaton of the passengers travel table. The second GUI consists of a timetable in the
upper part of the GUI and a travel table in the lower part. By combining these six half
part GUIs, it is possible to show nine different GUIs. Each one of the nine GUIs got its
own data class with attributes specified for the parameters of the GUI. The data classes
are saved in form of a linked list and represented at the bottom level in Figure 10.2.

The classes SetupSpinText and SetupSpinTextDouble are two components used as input
controls in the setup GUIs, these components uses standard JAVA components. Read-
ObjectFile and WriteObjectFile are the classes that controls the access of the setup files.
The class SimElevator and InitMenu is used to generate and control the main window.
RunSimulation is resonsible for the execution of an simulation.

When the user interface is implemented it is possible to use this to instantiate the classes
of the model component and test the instantiation of the classes. This will minimize the
amount of sourcecode used to test the classes of the model component.

53

10.3 Model Component (Simulation)

It is important to implement the classes of the model component early in the implemen-
tation phase, because these classes are used in the test of the function component classes.
It is very important that the contracts between the methods are fulfilled. This makes the
connecting of the classes easier. The use of button-up implementation makes it possible
to use the tested classes of the model component when implementing the classes of the
function component. The model component is divided in two, a model component of the
simulation and the model component of the control system. The simulation part contains
the classes of the system that uses the control system to circulate in the building.

10.4 Model Component (Control System)

It is possible to look upon the control system as a small part of the entire program. Using
the user interface to setup the control system and redefining some of the menu items it
is possible to test the control system. The data from the setup windows combined with
the already implemented classes can be used to check if the program is working properly.
When using already implemented and tested classes to test the implementation of the
control system classes it is possible to make a more complete test of the user interface and
minimize the chances of making testcode with bugs.

10.5 Function Component

The implementation of the function component classes starts when the implementation of
the model component classes is in the final state (test of the functionality and contract).
The first class of the function componet to be implemented is the DestinationManager.
This class makes it possible to create the passengers and place them on the right floor.

The next class to implement is SystemManager. The SystemManager is special, because
it is an observer of the classes Queue, Elevator and Protocol. The purpose of the Sys-
temManager class is to ensure encapsulation. It is necessary to implement the System-
Manager as three classes (SystemManagerObserverForQueue, SystemManagerObserver-
ForElevator and SystemManagerObserverForProtocol), each of these classes in the Sys-
temManager are observers. At this time in the total implementation phase, it is possible

54

to test the implementation in a way, that makes a passenger capable of traveling from one
floor to another, with the use of an elevator.

The last of the funtion component classes is the DestinationManager. When the Destina-
tionManager is fully implemented the passenger is capable of obtaining a new destination
and departuretime. This end the cycle of the passengerflow. The DestinationManager gets
the information about the passenger flow for a passenger from the DataContainer.

The structure of the passenger flow in the DataContainer is as shown in Figur 10.2. Each
passengers flow is defined in DataPassengerFlow. The DataPassengerFlow has an at-
tribute of the type Group. The class Group is an abstract class containing two abstract
methods (getNewTime and getNewDestinaton).

The classes GroupGetTypeSpecificTime and the other classes on the same level inherits
from the class Group and they also imply the method getNewTime.

The classes GroupGetTypeSpecificTimeAndOneFloor and the other classes on the same
level inherits from the classes on the level above and inherits the method getNewDestina-
tion.

GetNewDestination has to be called first, because it gets the information from data classes
placed on the bottom level of the data structure.

Because all of the getNewTime is called with the same type of parameters it is posible to
overload the method getNewTime in Group.

The same applies to the method getNewDestination.

The implementation is at this time in a final state.

Now it is possible to try the different types of passengerflow.

10.6 System Interface

The system interface between the simulation and the control system consists of the Sys-
temManager and the Protocol. It is based on the use of the design pattern Observer. The
SystemManager is implemented as the Protocols observer and controls the communica-
tion between the simulation and the control system through the Protocol. The purpose of
the Protocol is to act as converter between the elevator and the control system. Depend-
ing on how advanced the elevator is the Protocol must contain methods to calculate the
information needed for the control system to determine the flow of the elevators.

55

10014y A0 42 (chiyn B lalaTNE=THT) 100144 400 J21chiyng 4004300 J00] 4y B laTa] W E=Te M T 00| 42U
-al| Meed Al) Heped —al Heled -UDEw | e “UDEw) By -UDEw | e “J20|Deyed -ya0|oeled “J20|Deyed
«.._‘AW «..NW *..NW «..NW *..Mv «..NW «..Mv «.._‘AW «..NW
I I I I I I I I I
4004 40014 00| JAUOpUY A00)JUopUEY 400 42 diyngy 4004 400 JUOpUEY Ao J2d 40014

-lopUEMRUY -gciynpuy OPLEL “PU HE A “RUEE, AUOPUT LR, “RuUgELIL THAp L | UYWL
-opUERIRa -lopUEL RS -adA] dhols -olaul]En -olaul] s -olau] s -oladsiag -aadsien el lel=leio9 =
-add | dhods -add | dnods -adA | dnods -add | dhods -add | dhods -adé | dhods -add | dhods -adé | dnods

awlj wopuedlanadidnoig

3Ll Hepno] awi lagadh) dnosg

s ayaadglagadhdnoig

dnolg

K.._..
3

EBle(iolens|g

mo| Jaliuassedeleq]

ﬂ..—.AW
I

ﬁ.._‘AW
L

JauleloneEq

Figure 10.2: Data Class Structure.

56

Part I1v

Test

57

Chapter 11

Test

11.1 Test Strategy

As an overall test strategy it has been decided that each programmer is responsible for
the test of the classes he has programmed. In the process of integration tests have been
performed “bottom up”, that is classes in the model component were tested thouroughly
before integrated with the classes in the function component. This procedure were then
repeated before integration with the user and system interfaces. Finally the two main parts
of the program were combined and tested up against each other.

11.2 White Box

11.2.1 Method

The principle of a white box test is that you identify all possible independent paths through
a given method and use them as test cases.

This test method is very extensive and time-consuming. Thus we have not been able to
use it throughout the whole program. We have, however, performed it thouroughly on
a single sequence of the movePassenger method in the Elevator class to demonstrate the
principle.

59

11.2.2 Elevator.movePassenger

The following is a part of the method movePassenger in Elevator. We presume that the
variable NextDirection is Undecided:

if (NextDirection == UNDECIDED) {
if (!CurrentFloor.getUpQueue().isEmpty() &&
ICurrentFloor.getDownQueue().isEmpty()) {
if (CurrentFloor.getUpQueue().getFirstPassenger().getDepartureTime() <
CurrentFloor.getDownQueue().getFirstPassenger().getDeparture Time())
UP;

NextDirection
else
NextDirection = DOWN;

}

else { 10
if (CurrentFloor.getUpQueue().isEmpty() &&
CurrentFloor.getDownQueue().isEmpty()) {
setElevatorReadyFlag();
}
else {
if (CurrentFloor.getUpQueue().getNoOfPassengers()>
CurrentFloor.getDownQueue().getNoOfPassengers())
NextDirection = UP;
else
NextDirection = DOWN; 20

11.2.3 Flow Graph

Based on the source code the possible ramifications of the method movePassenger are
displayed in Figure 11.1, each node refering to a line in the code and the arrows being the
transition to the next line.

60

Figure 11.1: Flow graph of Elevator.movePassenger.

11.2.4 Indentification of Independent Paths

There are various ways to indentify the different independent paths, the number of inde-
pendent paths being V(G):

e Count the regions (the R’s), giving V (G) = 5.
e V(G) = arrows — nodes + 2 = 15arrows — 13nodes + 2 = 5.

e V(G) = ramifications + 1 = 4ramifications + 1 = 5.

Figure 11.2.4 shows the independt paths of the method.

61

Test Case | Path

2—4—-6-9-—22
2—4—-7-9-22
2—10—-11-13—-22
2—10—11—-16—-18 — 20 — 22
2—10—-11—-16—-19 — 20 — 22

Gl = W N =

Figure 11.2: The independent paths of Elevator.movePassenger.

11.2.5 Test Cases

The following test cases completes a white box test of Elevator.movePassenger. All details
are not included.

Once again, we presume that NextDirection is UNDECIDED.

The results (NextDirection, setinvokeElevatorFlag) of each test case can be obtained by
substituting (or NextDirection and setinvokeElevatorFlag with System.out.printin(<string>).

Casel

Passenger Karsten = new Passenger(1,355);
Passenger Tonny = new Passenger(2,355);

Floor A5 = new Building(NoOfElevators, NoOfFloors);

Karsten.setDeparture Time(60);
Tonny.setDepartureTime(90);

Ab.getFloor(ThisFloor).getUpQueue().addPassenger(Karsten);
Ab.getFloor(ThisFloor).getDownQueue().addPassenger(Tonny); 10

Ab.getElevator(ThisElevator).setDestination(ThisFloor);
Ab5.getElevator(ThisElevator).movePassenger(TimeOfMovement);

Case?

Passenger Karsten = new Passenger(1,355);
Passenger Tonny = new Passenger(2,355);

62

Floor A5 = new Building(NoOfElevators, NoOfFloors);

Karsten.setDeparture Time(90);
Tonny.setDepartureTime(60);

Ab.getFloor(ThisFloor).getUpQueue().addPassenger(Karsten);
Ab.getFloor(ThisFloor).getDownQueue().addPassenger(Tonny);

Ab.getElevator(ThisElevator).setDestination(ThisFloor);
Ab.getElevator(ThisElevator).movePassenger(TimeOfMovement);

Case3

Floor A5 = new Building(NoOfElevators, NoOfFloors);

Ab.getElevator(ThisElevator).setDestination(ThisFloor);
Ab.getElevator(ThisElevator).movePassenger(TimeOfMovement);

Case4

Passenger Karsten = new Passenger(1,355);

Floor A5 = new Building(NoOfElevators, NoOfFloors);

Ab.getFloor(ThisFloor).getUpQueue().addPassenger(Karsten);

Ab.getElevator(ThisElevator).setDestination(ThisFloor);
Ab.getElevator(ThisElevator).movePassenger(TimeOfMovement);

Caseb

Passenger Tonny = new Passenger(2,355);

Floor A5 = new Building(NoOfElevators, NoOfFloors);

Ab.getFloor(ThisFloor).getDownQueue().addPassenger(Tonny);

Ab.getElevator(ThisElevator).setDestination(ThisFloor);

63

10

Ab.getElevator(ThisElevator).movePassenger(TimeOfMovement);

Note that these tests were performed before the SimElevator model, function and system
interface components were integrated. No coupling existed between the components and
the constructors were simpler than the final ones.

11.3 Black Box

11.3.1 Method

Most of our program has been tested by the black box method.

11.3.2 Performing The Test

The following is the source code used for the black box test of the SimElevator model-
component. The main purpose of this component is circulation of passengers.

class Test {

public static void main(String[] args) {

// Create building and passengers

Building A5 = new Building(1,3);

Passenger Karsten = new Passenger(666,1);

Passenger Tonny = new Passenger(4,1);

Passenger Lars = new Passenger(9,1); 10
Passenger Claus = new Passenger(13,1);

// Circulate passengers

Tonny.setNewDestination(2);
Karsten.setNewDestination(2);
Lars.setNewDestination(3);
Claus.setNewDestination(2);

Ab.getElevator(0).setDestination(1); 20
Ab.getElevator(0).setNextDirection(ELEVATOR.UP);

64

Ab.getFloor(1).getPool().addPassenger(Tonny);
Ab.getFloor(1).getPool().addPassenger(Claus);
Ab.getFloor(1).getPool().addPassenger(Karsten);
Ab.getFloor(1).getPool().addPassenger(Lars);

Ab.getFloor(1).getPool().movePassenger(Tonny,1);
Ab.getFloor(1).getPool().movePassenger(Karsten,2);
Ab.getFloor(1).getPool().movePassenger(Claus,3);
Ab.getFloor(1).getPool().movePassenger(Lars,1);

Ab.getElevator(0).movePassenger(4);

Ab.getElevator(0).setDestination(2);
Ab.getElevator(0).movePassenger(7);

Claus.setNewDestination(1);
Tonny.setNewDestination(1);

Ab.getFloor(2).getPool().movePassenger(Tonny,8);
Ab.getFloor(2).getPool().movePassenger(Claus,8);

Ab.getElevator(0).setDestination(3);

Ab.getElevator(0).setNextDirection(ELEVATOR.DOWN);

Ab.getElevator(0).movePassenger(10);

Ab.getElevator(0).setDestination(2);
Ab.getElevator(0).movePassenger(12);

Ab.getElevator(0).setDestination(1);
Ab.getElevator(0).movePassenger(15);

// Verify movement of passengers and elevator

for (int i = 0; i < Ab.getElevator(0).getMovementArray().length; i++)
System.out.printin(* ELEVATOR: Ankonst kl . "+
Ab.getElevator(0).getMovementArray()[i].getTimeOfMovement()+
" til "+Ab.getElevator(0).getMovementArray()[i].getContainerlD()+

et age");

65

30

60

for (int i = 0; i < Karsten.getMovementArray().length; i++)
System.out.printin(" KARSTEN: Fl ytni ng kl . "+
Karsten.getMovementArray()[i].getTimeOfMovement()+
' fra " +Karsten.getMovementArray()[i].getContainerID());

for (int i = 0; i < Tonny.getMovementArray().length; i++)
System.out.printin(" TONNY: Fl ytning kI . "
+Tonny.getMovementArray()[i].getTimeOfMovement()+
' fra " +Tonny.getMovementArray()[i].getContainerID());

for (int i = 0; i < Lars.getMovementArray().length; i++)
System.out.printin(" LARS: Fl ytning kI . "
+Lars.getMovementArray()[i].getTimeOfMovement()+
' fra " +Lars.getMovementArray()[i].getContainerID());

for (int i = O; i < Claus.getMovementArray().length; i++)
System.out.printin(" CLAUS: Fl ytning kI . "

+Claus.getMovementArray()[i].getTimeOfMovement()+
" fra " +Claus.getMovementArray()[i].getContainerID());

// Calculate statistics

StatisticManager BigBrother = new StatisticManager();

Ab.endSimulation(BigBrother);

BigBrother.calculateCycles();

System.out.printin(" Gennensnitlig rejsetid per rej st etage: "

+BigBrother.calculateAverage());

System.out.printin(" Spr edni ng: " +Math.sgrt(BigBrother.calculateSD()));
System.out.printin(" Ant al rej ser: " +BigBrother.getNoOfCycles());

} // main

} /] Test

The output is then compared to the expected results.
By substituting all notify(this) with something like System.out.printIn("Invoke Elevator");
the outgoing signals to the function and interface components are tested.

66

70

90

Part v

Study Journal

67

Chapter 12
Study Journal

This Study report is intended to explain the origin of this project as well as sum op the
most important selections and decisions during the developing process. Further more the
used methods and programming tools will be commented to make a basis to evaluate the
experiences in object oriented analysis, design and programming.

12.1 Method

The method used in this software development project is Object Oriented Analysis and
Design (OOAD). During the course in OOAD we used [3]. The purpose of the course
was to learn how to think object oriented and analyse and design by that method.

A short comment to the OOAD book, is the lag of examples of dynamic programs, simu-
lations, etc. It shows only administrative programs like electronic schedules, which makes
it difficult to abstract from the book examples to our project which is a little more complex
as we simulate a dynamic environment with moving passengers and elevators.

12.2 Programming Tools

With reference to the PE-course Object Oriented Programming (OOP), the source-code
for the program have been written in the object oriented programming-language JAVA,
being specific JDK v. 1.1.6, as this is the version used in the OOP-course, and available
on the computer system at KOM-department on Aalborg University.

The literature used in the course is "Java Software Solutions, Foundation of Program

69

Design”, [5] by John Lewis and William Loftus. As supplemental literature we have
received documents about design patterns [2], threads [1], tests[7] and contracts [6].
Considering the difficulties in creating the graphical user interface we might have obtained
great advantage by using Swing (integrated in JDK 1.2.0) which is a GUI component kit
that simplifies the development of window components in JAVA.

12.3 The Working Process

12.3.1 Time Schedule

During the project period, we have not used a specified time plan, but a calendar with
milestones and deadlines. This type of plan have been satisfying for all members in the
group, and there have not occurred any kind of problems respecting the deadlines. To
make a few comments to our plan, we might have disposed more time to the implemen-
tation and testing. But we decided from the beginning to spend quite a lot of time to get
acquainted with the methods, furthermore we used 3 weeks of our project period on the
mini-project in the "Analog Elektronik™ course which demanded our full attention.

12.3.2 Group Decisions

The Group have worked as a democratic group, but the decision-making process have
been characterized by listening to those with experience in a specific field. This type
of decision-making have especially in the design phase been practiced as we distributed
the work to single persons or small subgroups. Then is was up to the person(s) in the
subgroups to design parts of the system, thus they should observe certain rules and speci-
fications set by the whole group.

12.4 Choosing the Project

Friday the 4th of September all students in the D3 - Computer Engineering semester had
to choose a main project. The theme of all projects was, due to an exemption of the study
arrangement middle of 97, controlling of dynamic systems e.g.. traffic lights, elevators,
network traffic, etc. As this project group had worked together in former projects, we
made a briefly discussion, and decided that we did not want to do a project which would

70

demand a lot of specialized knowledge (we tried that last semester), but a "simple" project
so we could devote this semester to learning OOP and OOAD. Therefore we chose the EI-
evator Control system project as we saw this as a more simple project than e.g.. computer
network traffic controlling where we first had to learn about computer network protocols
that might have meant learning almost every rfc-document!

12.5 Analysis

After choosing the project "Elevator Control system", we started to do the first exercises
in the analysis phase according to the OOAD course.

12.5.1 Defining The System

First thing to do was defining the base system, and then setup some criteria explaining
how the system should work, e.g. what tasks the user of the system should be able to
accomplish, what philosophy and idea to be underlying the system, etc. The project
group had nearly similar thoughts about what the system should look like, thus we had
quite different opinions whether the system should be central or decentral controlled. The
majority decided central control, with the argument that we wanted the control system to
be an entire unit, that is the control system for all times should keep track of and know
everything about all elevators.

The fact that there is not an actual user of our program, might seem to have made it easier
to develop the elevator control system, but actually it has unnecessary complicated the
analysis of the problem domain, because we have spent a lot of time discussing things
about the elevator control system that would have been given if we had an actual user
(e.g. elevator design).

To sum op the analysis phase, we planned the basic functionality of the system. Perhaps
we should have split the program in two parts, a control system and a simulation each
with corresponding interfaces. If we had done so we could have divided the project group
into two, one designing the simulation and the other designing the control system. By
doing this we could have taken more advantage of the resources in the group.

71

12.6 Design

When we entered the design phase we still had to finish some minor things in the analysis
document. But not more than we could start designing the program. First of all we had
to set up some design criteria specifying whether the system should be secure, efficient,
reusable, etc.

12.6.1 Criteria

As we were going to make a control system to an elevator system there were specific
criteria we had to give higher priority than other. Specially we wanted the system to be
integratable, as we wanted to be able to take out the control system an integrate it in an
existing building. On the other hand we did not want a very secure system as it should run
on a stand-alone computer. All in all we wanted a flexible and reliable system, which was
easy to maintain. Furthermore it should be rather easy to make some test on it, because
we had to simulate the passenger/building environment.

During the design phase we could have used some experience in programming in Java.
This would have made us able to include some of the Java specific parts e.g. observers
and thereby avoiding inconsistence between design and implementation. Further more it
would generally have made it easier to design the program.

12.7 Implementation

The implementation phase has been the most hectic period in the project, as said earlier in
this chapter, we could have used more time to implement the program. Before we began
to write the source code we sat down and wrote some simple contracts, telling what the
different pieces of the program should require, contain and ensure. Then we divided the
tasks among single persons or subgroups letting each one decide how the code should be
implemented. It showed out, that it might have been a good idea to use a little more time
making the contracts, thus we were not able to write all the code from the contracts only.
But it was a step in the right direction, and we learned that it is definitely a necessary
process to complete before making programs bigger than this. Nevertheless we learned a
great deal about teamwork, supporting one another to get the information needed to write
the pieces of the program in a way that made it possible to integrate all parts easily.

72

The graphical user interface is not implemented using contracts. Fortunately we heard
rumors that it is a little tricky getting the graphical user interface to look as intended, so
we began working on it at the end of the design phase. This showed out to be a good idea,
because it turned out that the rumors about the GUI were true. We might have been able
to save some time if we had used SWING, but we decided not to do this, because SWING
only existed as an beta version when we began to implement the program.

By letting the subgroups decide for themselves how they should implement the code re-
sulted in making some minor new classes and methods, which were not described in the
analysis and design documents. This happened because we was not aware of the need for
these classes and methods to realize the program parts. Anyway most of these classes and
methods are private and therefor they cannot be seen from other objects.

12.8 Testing

During the implementation phase we actually did some of the testing. First of all, the
syntax and semantic failures had to be fixed, so the program parts could compile! Then
we had to set up some test routines to check whether, the parts would act like we wanted
to. As the process went on more and more parts of the program could be joined, and we
could make further tests to see if the parts could work together.

This kind of testing can only be considered as a basic test. To do a more structured test
we could have specified some test routines to different parts of the program, from the
contracts for all the methods and classes. By doing that we could more easy ensure the
tests were performed on the right methods and classes. Of course it would be an overkill
to test all the trivial methods.

12.9 EXperience

The purpose with this project has from the beginning been to develop an almost fully
operating elevator control system and make a simulation of a building with passengers
and elevators to test the efficiency of the program , supported by a graphical user interface.
And of course learn the methods of object oriented analysis and design. Our main benefit
must be to gather knowledge to support our further studies.

Before we started this project only a few of the group members had actually written some

73

Java code, so we had to learn the most of Java from basics which was not that hard as we
learned to think object oriented, though some aspects of learning Java were complicated
due to lack of adequate explanations in Sun’s Java Development Kit Documentation [4].
Still as a result of this project we now have obtained a good overview of the possibilities
of Java.

It has been a challenge to make this program executing a dynamic simulation, because not
only did we have to create the simulation part, which is quite complicated, but we also
had to make the surroundings, so we could test the simulation. A result of this report is
our insight in simulation and the complications in testing a given simulation.

74

Part vi

Appendix

75

Chapter 13

Statistics

To give a crude evaluation of the performance of the control system, different statistical
values are calculated.

If time-efficiency is important, the time consumation of each passenger from the time he
enters the queue till he leaves the elevator, is of interest. This must be seen in connection
with the number of floors traveled.

The following equation gives the average time consumation per floor traveled:

1 At;
=— : 131

n
=1
n is the number of cycles of all passengers, At the time consumation from the passengers
entering the queue until he leaves the elevator, and As; is the number of floors traveled.

Also, the standard deviation gives a picture of the variation in the time consumation per
floor traveled.

SD(3.) =~ g(vt (13.2)
At
o=\/SD(5) (13.3)

A good measurement for the time consumation of each passenger would then be p + 20.
95,4% of the cycles would have consumed time within this interval. In other words: One

77

passenger using the elevator once is 95,4% likely to spend this time in queue and elevator

combined.
Similar values can be calculated for floors (e.g. queue length, average waiting time) and

the elevators (e.g. utilization of max speed)

78

Chapter 14
Elevator mechanics

To calculate the position of the elevators at a given time and the time of arrival at a given
place, we have to simulate the mechanical behaviour of the elevator. To simplify things
we have decided that the elevators of our system will move at constant acceleration. This
leaves the following characteristics for the elevator:

1. Maximum velocity going up

2. Maximum velocity going down

3. Constant acceleration going up

4. Constant decceleration going up
5. Constant acceleration going down

6. Constant decceleration going down
Since the elevators move at constant acceleration, the elevator can be in 4 different states:

1. Elevator is accelerating

2. Elevator is moving at maximum speed
3. Elevator is braking (deccelerating)

4. Elevator is waiting at a floor

79

“Welocity

brake S maximum speed

Time
accelerate deccelerate

Figure 14.1: the four states of the elevator
In the following equations, these formulars for movement with constant acceleration
known from physics are used:
e V=V+a-t
o X —Xo=Vy-t+3-a-t?
e VE=V¢+2-a- (X — Xp)
The following notation will be used
e Sindec = Position after [index]
e Ti.4e: = Time needed to perform this part of the movement (A time)
o Vi.aex = Velocity after [index]
The time needed to travel from one position to another is given by
Tiotar = Torake + Tacceteration + Tmazimum_speed + Tdeccelaration (14.1)

if the elevator is moving in the opposite direction of the destination, or if the elevator has
a Vqr¢ SO high that it cannot stop at the destination, thus it has to go past it and afterwards
travel back to the destination, then it has to brake.

To calculate the time needed to stop the elevator and the position after it has stopped we
use (Speed after braking = 0)

v
V=Vota-t,V=0=>t=——
a

(14.2)

1 1
X—Xo=Vo-t+§-a-t2:>X:X0+Vo.t+§.a.t2

80

If the elevator is moving in the direction of the destination, we have to calculate if the
elevator will be able to stop at the destination, or if it has to go past it, and afterwards
travel back to the destination. This is calculated using:

VZ2=V2+2-a- (X —X) (14.3)
Using this formula we can calculate the velocity as a function of time:
Velocity = V3,,, + 2 - decceleration - (S — Syiart) (14.4)

All put together this gives:

if (S destination > S start) {
(if V.start < 0) brake; }
el se {
if ((V_start”™2 +
2 * Updecceleration * (S brake - S start))
> 0) brake; }
el se {
if (V.start > 0) brake; }
el se {
if ((V_start”"2 +
2 * Downdeccel eration * (S brake - S start))
< 0) brake; }
}

To calculate at which position the elevator has to start deccelerating to stop at the destina-
tion, we use formula 14.4:

Velocity = Vriazimum_speed + 2 - decceleration - (S — Smazimum_speed) (145)

Vimazimum_speed = \/ Vi ke + 2 - acceleration - (Smazimum_speed — Strake)
Combined this gives (Viestination = 0):
0 =(Vi2ure + 2 - acceleration - (Smazimum_speed — Strake))
+2 - decceleration - (Sgecceleration — Smazimum_speed) =
0 =V, + 2 - acceleration - Smagimum_speed — 2 - acceleration - Sprake

+2 - decceleration — 2 - decceleration « Syrake

81

Isolating Syazimum_speed this gives:

% . be,ake + decceleration - Sgecceleration — acCCElETALI0M + Shroke

Smacm'mum speed —
-P decceleration — acceleration

(14.6)

This is only true if Vi, azimum_speed 1S elOw or equal to the elevator’s maximal velocity. If
not then we have the following equation:

vz .
mazximal_velocity

- Sdeccele'ration (147)
2 - decceleration

Smawimum_speed =

The time needed to deccelerate is calculated using the same methods as in formula 14.2

Vmazimum_speed (14.8)

Tdecceleration = - ;
decceleration

Now the time needed to accelerate and the position after acceleration can easily be calcu-
lated by using the same procedure as in 14.2:

Vmazimum_speed - V;)rake
acceleration (14.9)

Tacceleration =
]‘ 2
Sacceleration = ‘/brake : Tacceleration + 5 : Tacceleration + Sbrake

Likewise the time moving at maximum speed is:

Smawimum speed — Saccele'ration
=P (14.10)

Tmawimum_speed =
Vmawimum_speed

Finally the time of arrival of the elevator is

Tdestination = Lstart + Tbrake + Taccele’ration + Tmamimum_speed + Tdeccele'ration (1411)

82

Chapter 15

Control System evaluation

15.1 General Description

The control system contains two different types of destinations, movable and static des-
tinations. The static destinations are the ones coming from the passengers inside an ele-
vator, therefore they are connected to a certain elevator. The movable destinations, on the
other hand, are coming from passengers waiting on the floors, and are thus not connected
to a specific elevator.

The static destinations contain a time of insertion and a destination floor, while the mov-
able destinations contain a time of insertion, starting floor and a direction, which indicates
in which direction the passenger wants to go (up or down).

Because of this, the internal structure of the control system is divided into a list of movable
destinations, and a list for each elevator for the static destinations. The destinations are not
sorted in any way in the static lists. In the list of movable destinations the destinations are
sorted in the way that the eldest destination is first in the list and the youngest destination
is last in the list.

To add or remove destinations from the lists, the control system can be invoked by three
actions. These are:

1. AddMovableDestination. This action inserts a new destination into the list of mov-
able destinations. A destination with the same destination floor and direction cannot
be added twice in the list.

2. AddStaticDestinations. This action inserts new destinations into the list belonging

83

to the elevator which the action is sent from. Destinations that already exists in the
list will not be added.

3. DeleteDestination. This action deletes a static destination in a certain elevator. If
there is a movable destination at the same floor with the right direction it is also
deleted, because the waiting passengers on that floor now can walk into the elevator
and the movable destination in the list is no longer needed. (see the direction part).

Each time a new destination is added, or a destination is deleted (when an elevator arrives),
the control system recalculates the best order of the destinations. The control system has
a sorted list of destinations for each elevator for this purpouse. First the sorted list is
flushed. The static destinations get sorted and put in the sorted list (for all elevators).
Then the movable destinations get distributed between the sorted lists of destinations for
all elevators. This sorting is done in a way that gives the lowest time-value, and follows
certain guidelines which are:

1. An elevator carrying passengers cannot pass by a floor if any of its passengers wants
to get off at that floor.

2. An elevator carrying passengers cannot change its direction if there’s any passen-
gers left wanting to go in that direction.

These guidelines are included because passengers probably would find it very strange and
stressing if the elevator didn’t follow them, but also because they are greatly limiting the
number of possible combinations to test. In the sorting of the static destinations these
guidelines limit the sorting to only one combination. The sorting algorithm uses the
current elevator position and current direction for the sorting.

15.1.1 Time-Value

The time-value is a sum of two values each weighted by a factor that is adjustable for the
user. The idea behind our time-value algorithm is to minimize the total expected squared
waiting time for each destination, both movable and static. The reason why the time is
squared for each destination is that passengers that have waited a long time must be given
higher priority ([8]). The first adjustable factor represents the importance of the movable
destinations (the passengers waiting for an elevator), while the second adjustable factor

84

represents the importance of the static destinations (the passengers travelling inside the
elevators):

TimeValue = F'1 - Total SquaredW aitingTime + F2 - TotalSquaredTravelTime
(15.1)

where F1 and F2 are the two factors, and:

TotalSquaredW aitingTime =

J

Z(M(z) - ((CurrentTime — ActionTime(i)) + CalculatedTravelTime(i))?)

=1
Total SquaredTravelTime =
j
Z(S(z) - ((CurrentTime — ActionTime(i)) + CalculatedTravelTime(i))?)
i=1
(15.2)
Where:
J = number of sorted destinations
M(i) = 1 if i points to a movable destination in the sorted destination list, otherwise M(i)
=0
S(i) = 1 if i points to a static destination in the sorted destination list, otherwise S(i) = 0
CurrentTime = the current time of the evaluation
ActionTime(i) = the time when the i’th destination was invoked

CalculatedTravelTime(i) =
DirectTravelTime(fromPositionA fter Braking(CurrentPosition)toPosition(1)) +
i—1

Z(AvemgeWaitingTime + DirectTravelTime(fromPosition(i)toPosition(i + 1)))
k=1

(15.3)

CalculatedTravel Time(i) is the total expected travel time from the current elevator posi-
tion to the i’th destination. All destinations and stops between these two positions are
also counting and each stop adds an average waiting time. DirectTravelTime and Posi-
tionAfterBraking are methods, which use elevator mechanics for calculation (14)

85

15.1.2 Complexity

When the destinations from the movable list are distributed between the sorted destination
lists, each movable destination can be inserted in one of two possible ways for each sorted
destination list because of the restrictions given above and the fact that the sorted lists of
destinations now holds static destinations that are sorted. The first of the possible insertion
points in a sorted destination list is the point in the list, where the movable destination lies
between two other destinations and has the right direction between those two. A movable
destination for example with destination floor 5 and direction down could be inserted
between 6 and 2, but not between 2 and 6 or between 3 and 2. It is not always possible to
find such insertion point. The second possible insertion point in a sorted destination list
is always present and is at the end of the list.

5

/7 62 1

Figure 15.1: the two possible insertion points for a movable destination in a sorted list of
destinations

If we should try to insert the movable destinations in all possible ways it would give a
total of (2-m)™ combinations, where m is the number of elevators and » is the number of
movable destinations. A system with 10 floors and 10 movable destinations would give
20! combinations (approx. 1.024 - 10'3), which unfortunately is too many combinations
to be tried out in realtime. Since the perfect solution requires too many calculations we
have to use another approach. One approach would be to select the eldest moveable des-
tination and locate the best elevator and position in the temporary elevator destination list
for it, and then repeat this procedure with the next movable destination until all movable
destinations are inserted. With this approach the complexity is reduced to 2 - n - m com-
binations. This of course is not the perfect solution, but it is a pretty good approximation

86

of it.

To locate the best elevator and position for the movable destination in the sorted lists of
destinations we compare the change in time-values for the 2 - m possible insertion points
and choose a point that gives the lowest change of time-value. The movable destination
is then inserted in the correct elevator’s sorted list at the correct position and do the same
with the next movable destination. This process is repeated until there is no more movable
destinations to insert.

15.1.3 Directions

When the temporary elevator destination lists have been sorted the top destination from
each of the lists must be sent to each corresponding elevator, if they are changed since
last evaluation. Here the control system also gives each elevator a next direction. This
next direction is sent with the new destination (the new direction replaces the direction
of the new destination when sent). This next direction is used by the passengers to know
in which direction the elevator will go next. It is also the direction that is returned form
the protocol when deleting a destination. This way the delete method knows if or which
movable destination to delete. The next direction is calculated from the static destinations
in the sorted destination list. If the number of static destinations is less than 2, the next
direction will equal NODIRECTION, else it will be either UPDIRECTION or DOWNDI-
RECTION depending on the order of the two top destinations.

The control system also calculates a current direction for each elevator. This direction
is calculated by comparing the elevator’s current position to the top static destination
in the list of sorted destinations. If there’s no static destinations the direction will be
NODIRECTION. This current direction is used when sorting the static destinations the
next time that the elevator system is called.

87

Chapter 16

Screendumps

E%g Elevator simulation Application

Building sefup

¥pe
2
10
300

Mo, of elevatar

Mo, offloors -
Distance between to floors {in o) -

Remarks

Creatar

Figure 16.1: The Building setup window.

88

E%g Elevator simulation Application

Elevafor Setup

[m]

iMax Passengers in Elevatar

o
=

\Door Delay

[2%]
=

\Passenger Delay
ihlax. Speed Upwards 100.0
Max Speed Dowmwards 100.0
M. Acceleration Upwards 100.0
ax. Acceleration Dowrnwards 100.0
iMax Deacceleration Upwards 100.0

iMax. Deacceleration Downwards 100.0

Figure 16.2: The Elevator setup window.

89

Eg_;a Elevator zimulation Application

Group sefup

Group specification

Group identification _
Mo of passengerin the group

Type of passengers (Time orertalion) Type of passengers (MNexi gestinglion)

(& Travel at clock ® One floor
() Tirne on a floor) Multiple floors
(") Random time on a floor () Random floor

Start condifion

Start Flnor .

aur Minute

H
Start Clock
=1 |==1 |

Figure 16.3: The group setup window.

[Elevator simulation Application

Group passenger flow setup

Travel af clock

Hour Minute

Time for travel to next floor . E.

Travel to one fioor

B B

List of floors

Hour:Minute-=Floor
2:2-22
3423

|\Mext floor ;

Figure 16.4: The Passenger group flow setup window.

90

[Elevator simulation Application

Parameter Setup

Travel factor a0.0 .

Tirne factor 500 .

Figure 16.5: The Parameter setup window.

Egg Elevator simulation Application

Simulation specification

Mumber of days to simulate

Figure 16.6: The start simulation window.

91

[Elevator simulation Application

Abouf

This program was a 3rd semester project by group 355 at Aalborg University,
Instute of Electronic Systems, Department of Cammunication Technology.

Group 355 is;
Claus Alboege
Mads Christensen
Tonnwyg Gregersen
karsten Jensen
Feter Korsgaard
Lars Jochumsen Kristensen
Fobert Stepien

Figure 16.7: The about window.

92

Chapter 17
Abstracts from Sourcecode

The following sections in this appendix contains abstracts from the full sourcecode for the
program. Each group member is beeing help responsible the piece of sourcecode marked
with their name.

17.1 Tonny Gregersen

Part of the method actionPerformed in actionListener:

public void actionPerformed(ActionEvent action){

case viewObject.SAVE:
viewObject.clearMenuSetupltem();
FileDialog saveDialog = new FileDialog(viewObiject,
"Save setup");

saveDialog.setFile(viewObject.FileName);

saveDialog.setMode(FileDialog.SAVE);
saveDialog.show();

if (saveDialog.getFile() = null){
viewObject.FileName = saveDialog.getFile();
writeObjectFileObject = new WriteObjectFile();

93

10

try{
writeObjectFileObject.openWriteObjectFile(
viewObject.FileName);
writeObjectFileObject.writeObjectToLog(
viewObject.DataVar);

Hinally{
writeObjectFileObject.closeWriteObjectFile();

break;

The class WriteObjectFile:

import java.io.x;
import actionListener;
import DataContainer;
import InitMenu;

/***
x The WriteObjectFile class controls the storing of the

x configuration objects.
**/
class WriteObjectFile{

/***
x Sets FileObject as an instance of File
**/

private File FileObject;

/***
x Sets FileOutput as an instance of FileOutputStream
**/

private FileOutputStream FileOutput;

/***

94

20

30

50

+ Sets Out as an instance of ObjectOutputStream
**/

private ObjectOutputStream Out;

/***
* The name of the file that is to be stored
**/

private String FileName;

/***
= The constructor of WriteObjectFile
**/

public WriteObjectFile(){

}

/***
+ Method openWriteObjectFile opens a given file for
* output to a specified stream
**/
public void openWriteObjectFile(String FileName){
this.FileName = FileName;
try{
FileObject = new File(FileName);
FileOutput = new FileOutputStream(FileObject);
Out = new ObjectOutputStream(FileOutput);
}catch(lOException e){
System.out.printin(* (WiteCbjectFile
| OException): Unable to create " + FileName);

}
}//End Method openWriteObjectFile

/***
* Method writeObjectToLog writes a given object to a
x specified stream
**/
public void writeObjectToLog(Object LogThisObject){
try{
Out.writeObject(LogThisObject);
tcatch(IOException e){
System.out.printin(* (WiteCbjectFile

95

60

70

80

| OException): Unable to wite to "+ FileName);

}
}//End Method writeObjectToLog

/**
x Method closeWriteObjectFile closes the the output file
***/

public void closeWriteObjectFile(){

try{
Out.close();
tcatch(IOException e){
System.out.printin(* (WiteCbjectFile
| OException): Unable to cl ose

}
}//End Method closeWriteObjectFile

}//END CLASS WriteObjectFile

The Container Class:

The class Container

import java.lang.x;

import java.util.x;
/**
x Super class of the following classes : Elavator, Queue,

x Pool.

***/

abstract class Container extends Observable{

protected int ContainerlID;

protected int Command;

protected Container NextContainer = null;
protected Passenger ListOfPassengers = null;
protected int NoOfPassengers = O;
protected Passenger LastPassenger = null;
private Passenger NewPassengerToAdd,;

96

+ FileName);

100

110

120

130

protected Passenger SeekPassenger; 140

/**
* Instantiates (Constructor) a new Container Object
« which gets a ContainerID
+ param SetContainerlD The container identification
* number.
*/
public Container(int SetContainerID){
ContainerID = SetContainerID;
} // Constructor 150

public Container() {

} // Constructor

/**

* Returns the number of passengers in the container.

= return The number of passengers in the container.

*/

public int getNoOfPassengers() { 160
return NoOfPassengers;

/**
* Returns the command to be executed by the observer.
* return The type of operation.
sk >k >k >k >k 3k 3k 3k sk sk >k >k >k >k sk sk >k >k 3k sk sk sk >k sk sk sk sk sk sk sk sk >k sk sk sk sk sk sk sk sk sk sk sk sk skoskskosk skok skokosk sk k
public int getCommand(){
return Command;
} 170

/**
x Instantiates a new command object with a command.
+ param NewCommand New command.
*/
public void setCommand(int NewCommand) {
Command = NewCommand,;

97

/**
*x Method to check if a container is empty.
x return Wether the container is empty.
*/
public boolean isEmpty() {
if (NoOfPassengers==0) return true;
else return false;

/**
x Returns the passengers in the container in an array.
* return Array of passengers.

*/
public Passenger[] getPassengerArray() {
Passenger[] PassengerArray = new Passenger[
NoOfPassengers];
SeekPassenger = ListOfPassengers;
for (int i = 0; i < NoOfPassengers; i++) {
PassengerArray[i] = SeekPassenger;
SeekPassenger = SeekPassenger.getNextPassenger();
}
return PassengerArray;
} // getPassengerArray

/**
x= Returns the ID of the container.
x return The container ID.
sk skosk skoskoskoko sk sk sk kosk sk ksksk sk ksksk sk sk sk
public int getContainerID() {
return ContaineriD;
// getContainerID

/**
x Get the first passenger of the container.
x return The first passenger in the container.
*/
public Passenger getFirstPassenger() {
return ListOfPassengers;

} // getFirst

98

180

190

200

210

/**
= Add a passenger to the list of passengers.
= param AddPassenger Which passenger to add.
*/
public void addPassenger(Passenger AddPassenger){

try {
NewPassengerToAdd = (Passenger)AddPassenger.clone();
}
catch (CloneNotSupportedException €) {
System.exit(0);
}

if(ListOfPassengers == null)
ListOfPassengers = NewPassengerToAdd,;
else{
SeekPassenger = ListOfPassengers;

while(SeekPassenger.getNextPassenger() != null){
SeekPassenger = SeekPassenger.getNextPassenger();

SeekPassenger.setNextPassenger(NewPassengerToAdd);
}
NoOfPassengers++;

} // addPassenger

/**
x Sets the reference to the next container in the
* CuUrcuit.
x param SetNextContainer Which container to set as next
* container.
*/
public void setNextContainer(Container SetNextContainer){
this.NextContainer = SetNextContainer;

/**
* Returns the next container.
* return Next container.

99

220

230

240

250

260

public Container getNextContainer(){
return NextContainer;

/**
x Deletes a passenger and decrease number of passengers
x by 1.
x param DeletePassenger The passenger that should be
x deleted from a container.
x param TestPassenger List control object, e.g. 270
x ListOfPassengers.
***************>I<*************>I<>k>I<***********************/
protected void deletePassenger(Passenger DeletePassenger,
Passenger TestPassenger) {

SeekPassenger = ListOfPassengers;

if(SeekPassenger.getPassengerID() ==
DeletePassenger.getPassengerID()){
ListOfPassengers = null; 280
ListOfPassengers = SeekPassenger.getNextPassenger();
NoOfPassengers——;

}

else{

while((SeekPassenger.getNextPassenger() !'= null) &&
(DeletePassenger.getPassengerID() !=
SeekPassenger.getNextPassenger().
getPassengeriD()))
SeekPassenger = SeekPassenger.getNextPassenger(); 290

if(DeletePassenger.getPassengerID() ==
SeekPassenger.getNextPassenger().getPassengerID()){
if(SeekPassenger.getNextPassenger().
getNextPassenger()
1= null){
Passenger DelPassenger = SeekPassenger.
getNextPassenger();
SeekPassenger.setNextPassenger(SeekPassenger.

100

getNextPassenger().getNextPassenger());
DelPassenger.setNextPassenger(null);
DelPassenger = null;
¥
else{
SeekPassenger.setNextPassenger(null);
ListOfPassengers = SeekPassenger;

}

NoOfPassengers——;
}
else

System.exit(0);

}

} // deletePassenger

/**
= Move a given passenger to the next container. The
* NextContainer must be set!
+ param PassengerToMove The passenger to move.
*/

public void movePassenger(Passenger PassengerToMove) {

NextContainer.addPassenger(PassengerToMove);
deletePassenger(PassengerToMove, ListOfPassengers);

} // movePassenger
} // Container

17.2 Karsten Jensen

import java.awt.x;
import java.awt.event.x;
import java.lang.x;

class SetupSpinTextDouble{

101

300

310

320

final public static int BDEC = 1,
final public static int BINC = 2;
final public static int TEXT = 3;

private

10
SetupSpinTextDoubleActionListener BDec = new

SetupSpinTextDoubleActionListener (this,BDEC);

private

SetupSpinTextDoubleActionListener BInc = new

SetupSpinTextDoubleActionListener (this,BINC);

private

SetupSpinTextDoubleActionListener Text = new

SetupSpinTextDoubleActionListener (this, TEXT);

private

SetupSpinTextDoubleFocusListener FocusText = new

SetupSpinTextDoubleFocusListener (this, TEXT);

private
private
private
private
private
private
private
private
private
private

20
Panel SetupSpinTextDoublePanel;

GridBagLayout gridbag;

GridBagConstraints c;

TextField eText = new TextField (" " ,4);

Button eDec = new Button(" <");

Button elnc = new Button(" >");

Double Number;

double Min;

double Max;

double Step; 30

public SetupSpinTextDouble(Panel SetupSpinTextDoublePanel,

double InitNumber, double Min, double Max, double Step){
this.SetupSpinTextDoublePanel = SetupSpinTextDoublePanel;
this.Min = Min;

this.Max
this.Step

gridbag

Max;
Step;

= new GridBagLayout();

¢ = new GridBagConstraints(); 40
SetupSpinTextDoublePanel.setLayout(gridbag);

c.fill = GridBagConstraints.BOTH;

SetupSpinTextDoublePanel.add(eDec);

SetupSpinTextDoublePanel.add(eText);

SetupSpinTextDoublePanel.add(elnc);

setNumber(InitNumber);

102

eDec.addActionListener (BDec);
elnc.addActionListener (BInc);
eText.addActionListener (Text);
eText.addFocusListener (FocusText);

void setNumber(double intNumber){
Number = new Double(intNumber);
eText.setText(Number.toString());

}

void setNumber(String NumberString){
Number = new Double(NumberString);
eText.setText(Number.toString());

}

Button getincButton(){
return einc;

Button getDecButton(){
return eDec;

TextField getTextField(){
return eText;

double getNumber(){
return Number.doubleValue();

String getNumberInString(){
return Number.toString();

public double getMin(){
return Min;

103

60

70

public double getMax(){
return Max;

public double getStep(){
return Step;

class SetupSpinTextDoubleActionListener implements
ActionListener{

private SetupSpinTextDouble viewObiject;
private int command;

private double Number;

private Double INumber;

private String NumberString;

public
SetupSpinTextDoubleActionListener(SetupSpinTextDouble
viewObject, int listening_command){
this.viewObject = viewObiject;
command = listening_command,;

}

public void actionPerformed(ActionEvent action){
switch(command){

case viewObject.BDEC :
Number = viewObject.getNumber();
if(Number > viewObject.getMin())
Number = Number — viewObject.getStep();
viewObject.setNumber(Number);
break;

104

90

100

110

120

case viewObject.BINC :
Number = viewObject.getNumber();
if(Number < viewObject.getMax()) 130
Number = Number + viewObject.getStep();
viewObject.setNumber(Number);
break;

case viewObject. TEXT :
if((viewObject.getMin() <= viewObject.getNumber()) &&
(viewObject.getMax() >= viewObject.getNumber()))
Number = viewObject.getNumber();
break;
} 140

class SetupSpinTextDoubleFocusListener implements
FocusListener{

private SetupSpinTextDouble viewObject;

private int command;

private double Number; 150
private Double INumber;

private String NumberString;

public
SetupSpinTextDoubleFocusListener(SetupSpinTextDouble
viewObject, int listening_command){
this.viewObject = viewObject;
command = listening_command;
}
160
public void focusLost(FocusEvent focuslost){
switch(command){

case viewObject. TEXT :

try{
NumberString = viewObject.getTextField().getText();

105

if((viewObject.getMin() <=
(INumber.valueOf(NumberString)).doubleValue()) &&
(viewObject.getMax() >=
(INumber.valueOf(NumberString)).doubleValue()))
viewObject.setNumber(NumberString);
else
{viewObject.setNumber(viewObject.getNumber()); }
}catch(NumberFormatException
e){viewObject.setNumber(viewObject.getNumber()); }
break;

public void focusGained(FocusEvent focusgained){

switch(command){

}
}

/**

**/

import java.util.x;

public class Passenger implements Cloneable {

private int PassengerlD;

private int GroupID;

private int Destination = —1;

private int TravelState;

private int Command,;

private double ActionTime;

private double DepartureTime;

private Passenger NextPassenger = null;

106

170

180

190

200

private Movement ListOfPassengerMovement = new
Movement(—3,—1);
private Movement LastMovement = null;
private int NoOfMovements = O; 210

public Passenger(int PassengerID, int GroupID){
this.PassengerID = PassengerID;
this.GroupIlD = GrouplD;
TravelState = O;

public void setTravelState(int New) {
TravelState = New; 220

nt

public void logPassengerMovement(double ActualTime,
ContainerID){
if (ListOfPassengerMovement.getNextMovement() == null){
ListOfPassengerMovement.setNextMovement(new
Movement(ActualTime, ContainerID));
LastMovement =
ListOfPassengerMovement.getNextMovement(); 230
}
else {
LastMovement.setNextMovement(new
Movement(ActualTime,ContaineriD));
LastMovement = LastMovement.getNextMovement();
}
NoOfMovements++;
LastMovement.setNextMovement(null);

240
public Object clone() throws CloneNotSupportedException{
return super.clone();

public void setNewTime(double DepartureTime){
TravelState++;

107

this.DepartureTime = DepartureTime;

}

public void setNewDestination(int Destination){
this.Destination = Destination;

public void setPassengerID(int PassengerID){
this.PassengerID = PassengerlD;

}

public int getPassengerID(){
return PassengerlD;

public int getNoOfMovements() {
return NoOfMovements;

public void setGrouplD(int GrouplD){
this.GroupIlD = GrouplD;

}

public int getGrouplID(){
return GroupliD;

public int getDestination(){
return Destination;

public Movement[] getMovementArray() {

Movement[] MovementArray = new Movement[NoOfMovements];
Movement TempMovement = ListOfPassengerMovement;

for (int i = 0; i < NoOfMovements; i++) {

MovementArray[i] = TempMovement.getNextMovement();
TempMovement = TempMovement.getNextMovement();

}

return MovementArray;

108

250

260

270

280

public int getTravelState(){
return TravelState;

public int getCommand() {

return Command;

public double getActionTime() {
return ActionTime;

public void setActionTime(double NewActionTime) {
ActionTime = NewActionTime;

public double getDepartureTime(){

return DepartureTime;

public void setNextPassenger(Passenger NextPassenger){
this.NextPassenger = NextPassenger;

public Passenger getNextPassenger(){
return NextPassenger;

public void setPassengerState(){

109

290

300

310

320

17.3 Mads Grasbgll Christensen

/**>|<>I<>|<>I<*>|<>I<>|<>I<**>k>|<****>|<>k**>I<***>I<*****************************
* Class . Elevator
****>k****>k****>k>|<****>|<>k**>I<***>I<****************************/

class Elevator extends Container {
private int NextDirection = UNDECIDED;
private int Destination = 1;
private int MaxNoOfPassengers = 10;
private int[] UnprocessedDestination;
private Building BuildingRef;

private boolean[] ButtonPressed;

private Movement ListOfElevatorMovement =
new Movement(—1,—1);

private Movement LastMovement = null;
private int NoOfMovements = O;

private double ActionTime = O;

private double DoorDelay = 5;
private double PassengerDelay = 3;

110

private SystemManagerObserverForElevator
SystemManagerObserverForElevatorObject;

/*>|<>|<****>|<**>|<>|<>|<****>|<***********>|<*************************
« Elevator constructor.
***/
public Elevator(int SetElevatorID,

int SetMaxNoOfPassengers,

double SetPassengerDelay,

double SetDoorDelay,

Building Ref,

SystemManagerObserverForElevator

SystemManagerObserverForElevatorObject) {

addObserver(SystemManagerObserverForElevatorObject);

ContainerlD = SetElevatorlD;
BuildingRef = Ref;

MaxNoOfPassengers = SetMaxNoOfPassengers;
PassengerDelay = SetPassengerDelay;
DoorDelay = SetPassengerDelay;

ButtonPressed = new
boolean[BuildingRef.getNoOfFloors()];

UnprocessedDestination = new int[MaxNoOfPassengers];

for (int i=0; i < BuildingRef.getNoOfFloors(); i++)
ButtonPressed[i] = false;

for (int i=0; i < MaxNoOfPassengers; i++)
UnprocessedDestination[i] = O;

} // Constructor

/***
* Log elevator arrival.
***/

public void logElevatorMovement(double ActualTime,

111

int Floor) {

if (ListOfElevatorMovement.getNextMovement() == null){
ListOfElevatorMovement.
setNextMovement(new Movement(ActualTime, Floor));
70
LastMovement =
ListOfElevatorMovement.getNextMovement();
}
else {
LastMovement.setNextMovement
(new Movement(ActualTime, Floor));

LastMovement = LastMovement.getNextMovement();

}

NoOfMovements++; 80
LastMovement.setNextMovement(null);
} // log ElevatorMovement

/***
x Unloads and loads passengers.
***/

public void movePassenger(double Time) {

NextContainer = BuildingRef.getFloor(Destination). 90

getPool();

logElevatorMovement(Time, Destination);

Passenger Next = null;
ActionTime = Time + DoorDelay;

SeekPassenger = ListOfPassengers;
while(SeekPassenger !'= null){ 100
if(SeekPassenger.getDestination() ==

this.Destination) {

SeekPassenger.

112

logPassengerMovement(Time,ContainerID);

SeekPassenger.setActionTime(Time);
ActionTime += PassengerDelay;

((Pool)NextContainer).
getNewDestination(SeekPassenger);

super.movePassenger(SeekPassenger);

}

SeekPassenger = SeekPassenger.getNextPassenger();

NextContainer = null;

int NoBefore = NoOfPassengers;
ActionTime += DoorDelay;

Floor CurrentFloor = BuildingRef.getFloor(Destination);
CurrentFloor.getDownQueue().getNoOfPassengers();
CurrentFloor.getDownQueue().getNoOfPassengers();

if (NextDirection == UNDECIDED) {
if ('CurrentFloor.getUpQueue().isEmpty() &&
ICurrentFloor.getDownQueue().isEmpty()) {
if (CurrentFloor.getUpQueue().getFirstPassenger().
getDepartureTime()<
CurrentFloor.getDownQueue().getFirstPassenger()
.getDepartureTime())
NextDirection = UP;
else
NextDirection = DOWN;
}
else {
if (CurrentFloor.getUpQueue().isEmpty() &&
CurrentFloor.getDownQueue().isEmpty()) {
setElevatorReadyFlag();
}
else {
if (CurrentFloor.getUpQueue().

113

110

120

130

140

getNoOfPassengers()>
CurrentFloor.getDownQueue().
getNoOfPassengers())
NextDirection = UP;
else
NextDirection = DOWN;

switch (NextDirection) {
case UP : {
if(CurrentFloor.getUpQueue().isEmpty())
setElevatorReadyFlag();
else{
CurrentFloor.getUpQueue().
setNextContainer(((Container)this));
CurrentFloor.getUpQueue().
movePassenger(MaxNoOfPassengers—
NoOfPassengers, Time);
CurrentFloor.getUpQueue().setNextContainer(null);

}

break;
}
case DOWN: {
if(CurrentFloor.getDownQueue().isEmpty())
setElevatorReadyFlag();
else{
CurrentFloor.getDownQueue().
setNextContainer(((Container)this));
CurrentFloor.getDownQueue().
movePassenger(MaxNoOfPassengers—
NoOfPassengers, Time);
CurrentFloor.getDownQueue().setNextContainer(null);

}

break;

CurrentFloor = null;

114

150

160

170

180

ActionTime += (PassengerDelayx(NoOfPassengers—
NoBefore));

if (NoBefore < NoOfPassengers) {

int j =0; 190
for (int i=0; i < BuildingRef.getNoOfFloors(); i++) {
if (ButtonPressed[i]==true) {
setUnprocessedDestination(j,(i+1));
jH

}

if (UnprocessedDestination[0] != 0)
setUnprocessedDestinationFlag();

for (int i = 0; i < MaxNoOfPassengers; i++) 200
UnprocessedDestination[i] = O;

for (int i=0; i < BuildingRef.getNoOfFloors(); i++)
ButtonPressed[i] = false;

}

} // movePassenger

/***
x Returns the log of the elevator’s movement.
***/ 210
public Movement[] getMovementArray() {
Movement[] MovementArray = new Movement[NoOfMovements];
Movement TempMovement = ListOfElevatorMovement;
for (int i = 0; i < NoOfMovements; i++) {
MovementArray[i] = TempMovement.getNextMovement();
TempMovement = TempMovement.getNextMovement();
}
return MovementArray;
} // getElevatorMovementArray
220
/***
+ Notify the System Manager.
>k***************************>|<>k*************************/

public void setElevatorReadyFlag(){

115

Command = ELEVATORREADY;
setChanged();
notifyObservers(this);

230
/**

x Notifies the System Manager with UnprocessedDest.
**/

public void setUnprocessedDestinationFlag(){

Command = UNPROCESSEDDESTINATION,;
setChanged();
notifyObservers(this);

}

} // Elevator 240

/***
* Class : Container
***/

abstract class Container extends Observable{

protected int ContainerlID;

protected int Command;

protected Container NextContainer = null;

protected Passenger ListOfPassengers = null; 250
protected int NoOfPassengers = O;

protected Passenger LastPassenger = null;

private Passenger NewPassengerToAdd,;

protected Passenger SeekPassenger;

/***
= Add a passenger to the list of passengers.
***/
public void addPassenger(Passenger AddPassenger){
260
try {
NewPassengerToAdd = (Passenger)AddPassenger.clone();

}

catch (CloneNotSupportedException €) {

116

System.exit(0);

if(ListOfPassengers == null)
ListOfPassengers = NewPassengerToAdd,;

else{ 270
SeekPassenger = ListOfPassengers;

while(SeekPassenger.getNextPassenger() != null){
SeekPassenger = SeekPassenger.getNextPassenger();

SeekPassenger.setNextPassenger(NewPassengerToAdd);
}
NoOfPassengers++;
} // addPassenger 280
} // Container

17.4 Robert Stepien

/***
Evaluates the Destinations. Calls the calcNewDirections

x to find the new elevator directions. Calls

x calcNewDestination in the ControlSystemOutputs to find

the newDestination for each elevator. The protocol is

x not notifyed here.

*

*

***/
private void evaluate(Elevatorinfo[] Elevatorinformation){
// first sort the static destinations and calculate the
new directions 10

for (int i = 0; (i < NumberOfElevators); i++) {
ListOfOutputs[i].updateListOfSortedDestinations(
Elevatorinformation[i]);
ListOfOutputs[i].calcNewDirections(Elevator
Information[i]);

// then insert the movable destinations into the static

117

ones

int BestlnsertionElevatorNumber = 0O;
double LowestDeltaTimeValue;
double MaybeLowestDeltaTimeValue;

for (int i = O; (i < ListOfMovableDestinations.getNumber
OfDestinations()); i++) {
BestinsertionElevatorNumber = 0;

LowestDeltaTimeValue = ListOfOutputs[0].tryMovable
Destination(ListOfMovableDestinations.getDestination(
i), Elevatorinformation[0]);

for (int j = 1; (j < NumberOfElevators); j++) {
MaybeLowestDeltaTimeValue = ListOfOutputs[j].try
MovableDestination(ListOfMovableDestinations.get
Destination(i), Elevatorinformation[j]);
if (LowestDeltaTimeValue > MaybelLowestDeltaTime
Value) {
LowestDeltaTimeValue = MaybelLowestDeltaTimeValue;
BestInsertionElevatorNumber = j;
} // lower deltatime?

} // inner for-loop
ListOfOutputs[BestInsertionElevatorNumber].addMovable
Destination(ListOfMovableDestinations.getDestination(
i), Elevatorinformation[BestInsertionElevatorNumber]);

} // outer for-loop

//now we just have to send some dests to the protocol.
for (int i = 0; i < NumberOfElevators; i++) {
ListOfOutputs[i].calcNewDestination();

} // for loop
} // method evaluate

/***

x calculates the directions used for updating and for
x calculating the new destination. This method must be

118

20

30

40

50

« called before the insertion of the movable destinations 60
x in the sorted destination list (but after the update of
x the static desitnations)
******************************>|<**************************/
public void calcNewDirections(Elevatorinfo Elevator
Information) {
// first calculate the current direction
if (ListOfSortedDestinations.getNumberOf
Destinations() > 0) {
if (Elevatorinformation.getPosition() > ListOfSorted
Destinations.getDestination(0).getDestination 70
Floor()) {
CurrentElevatorDirection =
Destination.DOWNDIRECTION;

}
else {
CurrentElevatorDirection = Destination.UPDIRECTION;
}
}
else { // if no static destinations in the list then

give the elevator NODIRECTION 80
CurrentElevatorDirection = Destination.NODIRECTION;
} // end of current direction calculation

//then calculate the next direction (used by the
passenger curcuit)
if (ListOfSortedDestinations.getNumberOf
Destinations() < 2) { //less than 2 dests => NODIRECTION
NextElevatorDirection = Destination.NODIRECTION;
} 90
else { // more than 1 destination means DOWN or UP
if (ListOfSortedDestinations.getDestination(0).get
DestinationFloor() >
ListOfSortedDestinations.getDestination(1).get
DestinationFloor()) {
NextElevatorDirection = Destination.DOWNDIRECTION;
}
else {
NextElevatorDirection = Destination.UPDIRECTION;

119

// no other possibilities becauce we cannot add two
equal static destinations to the list.
}
} // end of next direction calculation
} // method calcNewDirections

/***
x changes the NewDestination and LastDestination and tells

x the protocol to get the data.
***/

public void calcNewDestination() {

if (ListOfSortedDestinations.getNumberOf
Destinations() == 0) { // no more destinations, but the
elevator must always have at
least 1 destination
NewDestination = new Destination(0.0, LastDestination
.getDestinationFloor(), Destination.NODIRECTION);
}
else {
NewDestination = new Destination(0.0, ListOfSorted
Destinations.getDestination(0).getDestination
Floor(), NextElevatorDirection);

}

} // method sendDestToProtocol

/***
x returns a possible insertion point for a movable

x (destination in the ListOfSortedDestinations (follows the

x given guidelines)
***/
private int possiblelnsertionPoint(Destination Dest,

Elevatorinfo Elevatorinformation) {

int ReturnValue = ListOfSortedDestinations.getNumberOf
Destinations(); //Returns this value if this is the only
possible insertion point

if (ReturnValue>0) {
if (Dest.getDirection() == Dest. UPDIRECTION) {

120

100

110

120

130

if ((Math.round(positionAfterBraking(Elevator 140
Information)) <= Dest.getDestinationFloor()) &&

(Dest.getDestinationFloor() <= ListOfSorted
Destinations.getDestination(0).getDestination

Floor())) {

ReturnValue = 0;

for (int i = 1; i < ListOfSortedDestinations.get
NumberOfDestinations(); i++) {

if ((ListOfSortedDestinations.getDestination(i—1). 150
getDestinationFloor() <= Dest.getDestination
Floor()) &&

(Dest.getDestinationFloor() <= ListOfSorted
Destinations.getDestination(i).getDestination

Floor())) {

ReturnValue = i;

160
if (Dest.getDirection() == Dest. DOWNDIRECTION) {
if ((Math.round(positionAfterBraking(Elevator
Information)) >= Dest.getDestinationFloor()) &&
(Dest.getDestinationFloor() >= ListOfSorted
Destinations.getDestination(0).getDestination

Floor())) {

ReturnValue = 0;

for (int i = 1; i < ListOfSortedDestinations.get 170
NumberOfDestinations(); i++) {
if ((ListOfSortedDestinations.getDestination(i—1).
getDestinationFloor() >= Dest.getDestination
Floor()) &&
(Dest.getDestinationFloor() >= ListOfSorted
Destinations.getDestination(i).getDestination

Floor())) {

ReturnValue = i;

121

}

return ReturnValue;
} //method possiblelnsertionPoint

/***
x adds the given movable destination to the
x ListOfSortedDestinations in the ControlSystemOutput
x object at the position which gives the lowest TimeValue
x and follows the given guidelines. 190
***/
public void addMovableDestination(Destination Dest,
Elevatorinfo Elevatorinformation) {
double OldTimeValue = getTimeValue(ElevatorInformation);

ListOfSortedDestinations.insertDestination(Dest,
ListOfSortedDestinations.getNumberOfDestinations());

double LowestDeltaTimeValue = getTimeValue(Elevator
Information)—OldTimeValue; 200
ListOfSortedDestinations.removeDestination(Dest);

ListOfSortedDestinations.insertDestination(Dest,

possiblelnsertionPoint(Dest, Elevatorinformation));

double MaybeLowestDeltaTimeValue = getTimeValue(Elevator

Information)—OldTimeValue;

if (MaybeLowestDeltaTimeValue > LowestDeltaTimeValue) {
ListOfSortedDestinations.removeDestination(Dest);
ListOfSortedDestinations.insertDestination(Dest,
ListOfSortedDestinations.getNumberOfDestinations()); 210

}

} // method addMovableDestination

/***
x returns the change of the timevalue after trying to

x insert the given movable destination in the

x sorted list in the ControlSystemOutput object at the

position which gives the lowest change in TimeValue and

*

*

follows the given guidelines.

122

***/

public double tryMovableDestination(Destination Dest,

Elevatorinfo Elevatorinformation) {

}

double OldTimeValue = getTimeValue(ElevatorInformation);

ListOfSortedDestinations.insertDestination(Dest,
possiblelnsertionPoint(Dest, Elevatorinformation));
double LowestDeltaTimeValue = getTimeValue(Elevator
Information)—OIldTimeValue;
ListOfSortedDestinations.removeDestination(Dest);

ListOfSortedDestinations.insertDestination(Dest,
ListOfSortedDestinations.getNumberOfDestinations());

double MaybelLowestDeltaTimeValue = getTimeValue(Elevator
Information)—OIldTimeValue;
ListOfSortedDestinations.removeDestination(Dest);

if (MaybeLowestDeltaTimeValue < LowestDeltaTimeValue) {

LowestDeltaTimeValue = MaybelLowestDeltaTimeValue;

return LowestDeltaTimeValue;
// method tryMovableDestination

/***

*

*

*

x

x

*

*

updates the ListOfSortedDestinations by sorting
ListOfStaticDestinations in the ControlSystemOutput
object. The sorting can only be done in one way because
of the given guidelines. ALERT! The direction in the
elevatorinformation must indicate the current direction

of the elevator! (NODIRECTION will work as
DOWNDIRECTION!)

***/

public void updateListOfSortedDestinations(Elevatorinfo
Elevatorinformation) {

int FloorAfterBraking = (int)Math.round(
positionAfterBraking(ElevatorInformation));

ListOfSortedDestinations.flush();

123

220

230

240

250

if (ListOfStaticDestinations.getNumberOf 260
Destinations()>0) {
ListOfSortedDestinations.insertDestination(ListOf
StaticDestinations.getDestination(0),0);
if (ElevatorInformation.getDirection() ==
Destination.UPDIRECTION) {//current direction of elev.
for (int i = 1; i<ListOfStaticDestinations.getNumber
OfDestinations(); i++) {
if (ListOfStaticDestinations.getDestination(i).get
DestinationFloor() >= FloorAfterBraking) {
int j; 270
for (j = 0; ((ListOfSortedDestinations.get
NumberOfDestinations() > j) &&
(ListOfStaticDestinations.get
Destination(i).getDestinationFloor() >
ListOfSortedDestinations.get
Destination(j).getDestinationFloor()) &&
(ListOfSortedDestinations.get
Destination(j).getDestinationFloor() >=
FloorAfterBraking)); j++);
ListOfSortedDestinations.insertDestination(List 280
OfStaticDestinations.getDestination(i),j);
}
else {
int j;
for (j = 0; ((ListOfSortedDestinations.get
NumberOfDestinations() > j) &&
(ListOfStaticDestinations.get
Destination(i).getDestinationFloor() <
ListOfSortedDestinations.get
Destination(j).getDestinationFloor())); j++); 290
ListOfSortedDestinations.insertDestination(List
OfStaticDestinations.getDestination(i),j);

}
}

else {
for (int i = 1; i<ListOfStaticDestinations.getNumber
OfDestinations(); i++) {
if (ListOfStaticDestinations.getDestination(i).get

124

DestinationFloor() <= FloorAfterBraking) { 300
int j;
for (j = O; ((ListOfSortedDestinations.get
NumberOfDestinations() > j) &&
(ListOfStaticDestinations.get
Destination(i).getDestinationFloor() <
ListOfSortedDestinations.get
Destination(j).getDestinationFloor()) &&
(ListOfSortedDestinations.get
Destination(j).getDestinationFloor() <=
FloorAfterBraking)); j++); 310
ListOfSortedDestinations.insertDestination(List
OfStaticDestinations.getDestination(i),j);
}
else{
int j;
for (j = 0; ((ListOfSortedDestinations.get
NumberOfDestinations() > j) &&
(ListOfStaticDestinations.get
Destination(i).getDestinationFloor() >
ListOfSortedDestinations.get 320
Destination(j).getDestinationFloor())); j++);
ListOfSortedDestinations.insertDestination(List
OfStaticDestinations.getDestination(i),j);

}
}
}
}

} // method updateListOfSortedDestinations

17.5 Claus Albgge

/**

public class ElevatorSetup extends MenuWindow {

/**
MaxUpDeAccelerationbSetupSpinTextDouble =
new SetupSpinTextDouble(PMaxUpDeAcceleration,100,10,1000,1)

125

MaxDownDeAccelerationbSetupSpinTextDouble =
new SetupSpinTextDouble(PMaxDownDeAcceleration,100,10,1000,1); 10

/**
+ Sets the input data in DataVar.
**/
public void setData(){
mWindow.DataVar.createL istOfElevatorData();
ListOfElevatorData =
new ElevatorDatalmWindow.DataVar.getNoOfElevatorInBuilding()];
ElevatorDataObject =
new ElevatorData(20

— MaxUpDeAccelerationbSetupSpinTextDouble.getNumber() /
mWindow.DataVar.getDistanceBetweenFloor(),

MaxDownDeAccelerationbSetupSpinTextDouble.getNumber() /
mWindow.DataVar.getDistanceBetweenFloor());

for(int i = 0; i < mWindow.DataVar.getNoOfElevatorIinBuilding(); i++)
ListOfElevatorData[i] = ElevatorDataObject;
mWindow.DataVar.setListOfElevatorData(ListOfElevatorData); 30
mWindow.DataVar.testPrintElevatorData();

}

/**

public abstract class Group implements Serializable{

/**
= Private reference to the setup of the entire simulation 40
**/

private DataContainer DataContainerObject;

/***
x Cannot be called directly because it is abstract.

«= param DataContainerObject Reference to the setup of t

* he entire simulation

126

Sk >k sk sk >k sk sk >k sk sk ok sk sk sk skok skok sk sk sk sk sk ok sk sk ok sk sk sk sk sk >k sk sk ok sk sk sk sk sk sk sk >k sk skok skok skok skok sk ksk ko

public Group (DataContainer DataContainerObject)
{ 50
this.DataContainerObject = DataContainerObject;

// constructer Group

/***

x Get new departure time for the passenger. (abstract)

* param PassengerObject Which passenger to change

+ param DataPassengerFlowObject The passengerflow of the

* passenger.

sk sk sk sk sk sk sk sk sk sk sk sksk skok skok sksk skosk sksk sk ok skok skokoskok sk sk sk sk ok kok sk

abstract public void getNewTime(Passenger PassengerObject, D 60
ataPassengerFlow DataPassengerFlowObject);

/***

* Get new destination for the passenger. (abstract)

* param PassengerObject Which passenger to change

* param DataPassengerFlowObject The passengerflow of

* the passenger.

Sk sk sk sk >k sk sk sk sk sk sk sk sk sk skok skok sk sk sk sk sk ok skok skok skok sk sk sk kok sk k sk

abstract public void getNewDestination(Passenger Passenger O

bject, DataPassengerFlow DataPassengerFlowObject); 70

} // class Group

/**

/ 3k >k 3k sk >k sk >k 5k sk >k 3k ok >k sk >k sk >k ok sk ok sk ok sk >k sk >k sk skok sk sk skok sk sk sk ok sk sk k skok sk sk skok sk kok sk sk skksk sk sk k
abstract class GroupTypeGetSpecificTime extends Group
implements Serializable{

/*** 80
x The list of departure times for the getNewTime(Passenger

* P) method.

***/

private int ClockHour;

private int ClockMinute;

private int DaylInSimulation;

private Passenger PassengerObject;

127

private DataPassengerFlow DataPassengerFlowObject;
private DataContainer DataContainerObject;

<1y
/**>|<>|<>|<**************>|<***************************************
Cannot be called directly because it is abstract.
* param DataContainerObject The DataContainerObject!
*/
public GroupTypeGetSpecificTime (DataContainer DataContainerObject) {
super(DataContainerObject);
this.DataContainerObject = DataContainerObject;
} // constructer GroupTypeGetSpecificTime
100
/**
* Get specific departure time for the passenger
= (from departureTime[TravelState]).
* param PassengerObject Which passenger to change.
+ param DataPassengerFlowObject Where to get the data for
x the passenger.
setTimeData must be executed before getNewTime is called
public void getNewTime(Passenger PassengerObject, 110
DataPassengerFlow DataPassengerFlowObject) {
this.PassengerObject = PassengerObiject;
this.DataPassengerFlowObject = DataPassengerFlowObiject;
PassengerObject.setNewTime(60x60x((24«DayInSimulation)+
ClockHour)+60«ClockMinute);
// PassengerObject.setNewTime(ClockHour+ClockMinute);
} // method getNewTime
120

protected void setTimeData(int ClockHour,int ClockMinute,
int DaylInSimulation){
this.DaylInSimulation = DaylInSimulation;
this.ClockHour = ClockHour;
this.ClockMinute = ClockMinute;

128

} // class GroupTypeGetSpecificTime
/***/

130

/**
class GroupTypeGetSpecificTimeAndOneFloor extends
GroupTypeGetSpecificTime implements Serializable {

private DataClockOneFloor ListOfDataClockOneFloor = null;

private DataClockOneFloor SeekListOfClockOneFloor = null;

private Passenger PassengerObject;

private DataPassengerFlow DataPassengerFlowObject;

private DataContainer DataContainerObject; 140
private int DaylInSimulation;

/***
Instantiates a new Group Object which gives a specific dex parture time and a
* specific destination each time.
x
Alert!The Destination parameter must not have x two adjecent destinations
« of the same value (not even first/last)

x param DataContainerObject Reference to the setup of thx e entire simulation
>k >k >k 3k 3k 3k 3k sk sk >k >k >k sk sk sk >k >k sk sk sk >k 3k sk sk sk >k 5k 5k sk sk sk 3k sk sk >k sk sk sk sk ksk sk sk sk sk skesk sk ksksk sk kskosk skk 150
public GroupTypeGetSpecificTimeAndOneFloor(DataContainer
DataContainerObject) {
super(DataContainerObiject);
this.DataContainerObject = DataContainerObject;
DayInSimulation = 0;

// constructer GroupTypeGetSpecificTimeAndOneFloor

/*** %

Get a new destination for the passenger. This method 160
returns one specific floor

from DestinationFloor[TravelState]

Must be called before the getNewTime()

« method!< /b>

* param PassengerObject Which passenger to change.

+ param DataPassengerFlowObject Where to get the data for % the passenger.

*

*

*

***/

129

public void getNewDestination(Passenger PassengerObject,
DataPassengerFlow DataPassengerFlowObject) {
170
this.PassengerObject = PassengerObject;
this.DataPassengerFlowObject = DataPassengerFlowObject;
SeekListOfClockOneFloor = ListOfDataClockOneFloor;

// seek throug the list of destination
if(PassengerObject.getDestination() != —1){
while((SeekListOfClockOneFloor.getNextInList()
I= null) && (PassengerObject.getDestination()
I= SeekListOfClockOneFloor.getNextFloor())){
SeekListOfClockOneFloor 180
= SeekListOfClockOneFloor.getNextInList();

}

if(SeekListOfClockOneFloor.getNextInList() == null){
DayInSimulation++;
SeekListOfClockOneFloor = ListOfDataClockOneFloor;
PassengerObject.setTravelState(1);

}

else
SeekListOfClockOneFloor 190
= SeekListOfClockOneFloor.getNextInList();

// System.out.printin(“‘DayInSimulation = * + DayInSimulation);

setTimeData(SeekListOfClockOneFloor.getClockHour(),
SeekListOfClockOneFloor.getClockMinute(),DayInSimulation);

PassengerObject.setNewDestination(SeekListOfClockOneFloor.getNextFloor());
200

} // method getNewDestination

public DataClockOneFloor getListOfDataClockOneFloor(){

return ListOfDataClockOneFloor;

public void setListOfDataClockOneFloor(DataClockOneFloor

130

ListOfDataClockOneFloor){
this.ListOfDataClockOneFloor
= ListOfDataClockOneFloor; 210

} // class GrouptypeGetSpecificTimeAndOneFloor

/***/

17.6 Peter Koorsgaard

/***
* A class which calculates the time needed to travel from

+ the current position to it‘s destination. (Only positive

+ direction shown because of space restrictions)
***/

class TravelTime {

private Elevatorinfo StartPosition;

private Elevatorinfo BrakePosition;

private Elevatorinfo AccelerationPosition; 10
private Elevatorinfo MaximumSpeedPosition;

private Elevatorinfo DeAccelerationPosition;

private ElevatorData DataOfElevator;

public TravelTime(ElevatorData DataOfElevator,
Destination DestinationFloor,
Elevatorinfo CurrentPosition) {

double T_start = CurrentPosition.getTime(); 20
double S_start = CurrentPosition.getPosition();
double V_start = CurrentPosition.get\Velocity();

double T_brake = 0.0;
double S_brake = S_start;

double V_brake = V_start;

double S_acc; double T_acc; double T_deacc;

131

double S_max; double V_max; double T_max;
StartPosition = CurrentPosition;

if (DestinationFloor.getDestinationFloor() > S_start) {
if (V_start<0) {
// brake - because we want to go up
T_brake = — V_start /
DataOfElevator.getDownDeAcceleration();
S_brake = V_start«T_brake + 0,5%
DataOfElevator.getDownDeAcceleration()
«xT_brakexT_brake + S_start;
V_brake = 0.0;
} // brake - for updirection
// are we going to miss the destination in first try?
else if ((0.5%V_start«xV _start +
DataOfElevator.getUpDeAcceleration()x
DestinationFloor.getDestinationFloor()
— DataOfElevator.getUpAcceleration()*S_start)
/ (DataOfElevator.getUpDeAcceleration()
— DataOfElevator.getUpAcceleration())

< S_start) {
// brake - because we are going too far
T_brake = — V_start /

DataOfElevator.getUpDeAcceleration();
S_brake = V_startxT_brake + 0.5%
DataOfElevator.getUpDeAcceleration()
«T_brake+T_brake + S_start;
V_brake = 0.0;
} // brake - because we are going too far

} // going up

else {
// do the same thing for down direction...

}

if (DestinationFloor.getDestinationFloor()>S_brake) {

// going up
S_max = (0.5%V_brakexV _brake
+ DataOfElevator.getUpDeAcceleration()x

132

30

40

50

DestinationFloor.getDestinationFloor()
— DataOfElevator.getUpAcceleration()+S_brake
)/
(DataOfElevator.getUpDeAcceleration()
— DataOfElevator.getUpAcceleration());
V_max = Math.sqrt(2x
DataOfElevator.getUpDeAcceleration()
(S_max — DestinationFloor.getDestinationFloor()));
if (V_max > DataOfElevator.getMaxUpVelocity()) {
// V_max bigger than maxspeed
// recalculate deacceleration position
S_max = (DataOfElevator.getMaxUpVelocity()*
DataOfElevator.getMaxUpVelocity()) /
(2«DataOfElevator.getUpDeAcceleration())
+ DestinationFloor.getDestinationFloor();
// maximum speed is reset..
V_max = DataOfElevator.getMaxUpVelocity();
} // V-max > MaxUpVelocity

T_deacc = — V_max/DataOfElevator.getUpDeAcceleration();

T_acc = (V_max — V_brake) /
DataOfElevator.getUpAcceleration();
S_acc = V_brakexT_acc + 0.5%

DataOfElevator.getUpAcceleration()«T_accx T _acc

+ S_brake;

if ({(V_max == 0)) { T_max = (S_max—S_acc) / V_max; }

else { T-max = 0; }

} // going up
else {
// do the same for downdirection

} // going down

BrakePosition = new Elevatorinfo (S_brake,
V_brake,CurrentPosition.getDirection(),
T_brake);

AccelerationPosition = new Elevatorinfo (S_acc,V_max,

CurrentPosition.getDirection(),
T_acc+T_brake);

133

70

90

100

MaximumSpeedPosition = new Elevatorinfo (S_max,V_max,
CurrentPosition.getDirection(),
T_max+T_acc+T _brake);

DeAccelerationPosition = new Elevatorinfo
(DestinationFloor.getDestinationFloor(),
0.0,CurrentPosition.getDirection(),
T_deacc+T_max+T_acc+T _brake);

} // constructor TravelTime

public double getTotalTime () {
return StartPosition.getTime() + BrakePosition.getTime()
+ AccelerationPosition.getTime()
+ MaximumSpeedPosition.getTime()
+ DeAccelerationPosition.getTime();
} // method getTotalTime

} // class TravelTime

/**
x The Group SuperClass.
***/

public abstract class Group implements Serializable{

private DataContainer DataContainerObject;

public Group (DataContainer DataContainerObject) {
this.DataContainerObject = DataContainerObject;

} // constructer Group

/***
x Get new departure time for the passenger. (abstract)
***/
abstract public void getNewTime(Passenger PassengerObject,
DataPassengerFlow DataPassengerFlowObject);

/**
x Get new destination for the passenger. (abstract)
**/
abstract public void getNewDestination(Passenger

PassengerObject, DataPassengerFlow

134

110

120

130

140

DataPassengerFlowObject); 150

} // class Group

/**
* The Protocol. This class is the interface between the

x control system and the model. (only partly included

* because of space restrictions)
***/

class Protocol extends Observable implements Observer{ 160

public static final int SCHEDULECHANGED = 60;
private int CurrentElevatorNumber;

private Destination CurrentDestination;

private double CurrentTime;

private ElevatorMovement[] ListOfElevatorMovements;
private ControlSystem ControlSystemObiject;

/***
* constructor protocol. 170
***/
public Protocol (int NumberOfFloorsIinBuilding,
int NumberOfElevatorsinBuilding,
ElevatorData[] DataOfElevators,
Observer ObserverObject) {

// add the observer, so that we can notify it later.

addObserver(ObserverObject);

// create listOfElevatorMovements of correct size

ListOfElevatorMovements = 180
new ElevatorMovement[NumberOfElevatorsinBuilding];

// instantiates the ListOfElevatorMovements

for (int i=0; i<NumberOfElevatorsinBuilding; i++) {
ListOfElevatorMovements[i] =
new ElevatorMovement(DataOfElevators[i],
new Destination(0.0,1,Destination.NODIRECTION),

new Elevatorinfo(1.0,0.0,Destination.NODIRECTION,0.0));

} // for loop

135

190
// create ControlSystem object
ControlSystemObject =
new ControlSystem (NumberOfFloorsinBuilding,
NumberOfElevatorsinBuilding,DataOfElevators,this);
} // constructor Protocol

/***
x Update method. This method is invoked by the
« notifyobservers of an observable of this observer.
x (see Observer interface and Observable class) 200
***/
public void update (Observable o, Object args) {

if (((ControlSystemOutput)args).getCommand()

== ControlSystemOutput. SCHEDULECHANGED) {

CurrentElevatorNumber =
((ControlSystemOQutput)args).getElevatorNumber();
CurrentDestination =
((ControlSystemOutput)args).getNewDestination();
210
ListOfElevatorMovements[CurrentElevatorNumber].
setNewDestination(CurrentDestination,CurrentTime);

CurrentDestination = new
Destination(ListOfElevatorMovements
[CurrentElevatorNumber].getNextActionTime(),
CurrentDestination.getDestinationFloor(),
CurrentDestination.getDirection());

setChanged(); 220
notifyObservers(this);
} // is it a ControlSystemOutput object?
} // method update
} // class Protocol

17.7 Lars Jochumsen Kristensen

/***

136

* The class DestinationManager
**/

public class DestinationManager implements Observer{

private RunSimulation rSimulation;
private DataPassengerFlow SeekDataPassengerFlow;

private int GrouplD;

private int NoOfPassengerInGroup;
private int StartFloor;

private int StartHour;

private int StartMinute;

private int PassengerlD = 0;
private Pool PoolObject;

private Passenger PassengerObject;

/***
* Instantiates the DestinationManager which give all the

* Passengers a start destination and departuretime.

* (specific destination each time.)
**/

public DestinationManager(RunSimulation rSimulation){

this.rSimulation = rSimulation;

} // constructor DestinationManager

/***
+ Creates the passenger with there destiantions and
* departure times.
+x The passengers is placed on there start floors.
* The departure times is added to the TimeManagers list
* of passenger events
**/
public void createPassengerInBuilding(){
SeekDataPassengerFlow =
rSimulation.getMenuWindow().DataVar.
getListOfDataPassengerFlow();

137

10

20

40

PassengerID = 0;

while(SeekDataPassengerFlow != null){

// 9et specific data about the group

GrouplD = SeekDataPassengerFlow.getGrouplD();

NoOfPassengerInGroup =
SeekDataPassengerFlow.getNoOfPassengerIinGroup();

StartFloor = SeekDataPassengerFlow.getStartFloor();

StartHour = SeekDataPassengerFlow.getStartHour();

StartMinute = SeekDataPassengerFlow.getStartMinute();

//Create all passenger in the group with a destination

// and a departuretime

for(int i = O; i < NoOfPassengerInGroup; i++,PassengerID++){

PoolObject = rSimulation.getBuildingObject()

.getFloor(StartFloor).getPool();

PassengerObject = new Passenger(PassengerID,GrouplD);

// get new destination and departuretime

SeekDataPassengerFlow.getListOfGroupEvent().getNewDestination
(PassengerObject,SeekDataPassengerFlow);

SeekDataPassengerFlow.getListOfGroupEvent().getNewTime(
PassengerObject,SeekDataPassengerFlow);

// Save new destination and departuretime in the object of

// the passenger and timemanager

PoolObject.addPassenger(PassengerObject);

rSimulation.getTimeManagerObject().addPassengerEvent
(PoolObject,PassengerObiject);

}

SeekDataPassengerFlow = SeekDataPassengerFlow.getNextinList();

} // loop
} // end while

/***
x This metode is called the obsevable class pool notifyes
this observer. Get the type of command to be executed

*

x in pool. The command be executed is to get a new
x destination for the passenger.
***/

public void update(Observable o, Object arg){

138

60

70

if(((Pool)arg).getCommand() ==
((Pool)arg). GETNEWDESTINATION){
// get information from pool
PassengerObject = ((Pool)arg).getPassengerToMoveObiject();
PoolObject = ((Pool)arg).getPoolObject();
// find reference to passengerflow of the group the
// passenger are palced in.
SeekDataPassengerFlow = rSimulation.getMenuWindow()
.DataVar.getListOfDataPassengerFlow(); 90
while((SeekDataPassengerFlow !'= null) &&
(SeekDataPassengerFlow.getGrouplD() =
PassengerObject.getGrouplD())){
SeekDataPassengerFlow = SeekDataPassengerFlow
.getNextInList();

// if passengerflow of the group exist then get the

// passenger a new desination and departuretime

if(SeekDataPassengerFlow != null){ SeekDataPassengerFlow 100
getListOfGroupEvent().getNewDestination
(PassengerObject,SeekDataPassengerFlow);

SeekDataPassengerFlow.getListOfGroupEvent()
.getNewTime(PassengerObject,SeekDataPassengerFlow);

// Save new destination and departuretime in the object of
// the passenger and timemanager
PoolObject.addPassenger(PassengerObject);

110

rSimulation.getTimeManagerObject().addPassengerEvent

(PoolObiject,PassengerObject);
}
} // is command = GETNEWDESTINATION
} // method update
} // class DestinationManager
120

/***

139

* The class DataClockOneFloor
**/

class DataClockOneFloor implements Serializable{

private int ClockHour;
private int ClockMinute;
private int NextFloor;

private DataClockOneFloor NextinList = null; 130

/**
x Constructor of the class DataClockOneFloor
***/
public DataClockOneFloor(int ClockHour, int ClockMinute,
int NextFloor){

this.ClockHour = ClockHour;

this.ClockMinute = ClockMinute;

this.NextFloor = NextFloor;

/**
x Add an object of DataClockoneFloor to the linked list of
x DataClockOneFloor
***/
public DataClockOneFloor addDataClockOneFloor(int
ClockHour, int ClockMinute, int NextFloor){
NextInList = new DataClockOneFloor(ClockHour,
ClockMinute, NextFloor);
return NextinList; 150

[]

/**
x Returns the next floor
**/
public int getNextFloor(){

return NextFloor;

140

/**
* Returns the next element in the linked list of
+ DataClockOneFloor
**/
public DataClockOneFloor getNextInList(){
return NextinList;

/**
* The class GroupTypeGetSpecificTimeAndOneFloor

**/

class GroupTypeGetSpecificTimeAndOneFloor extends
GroupTypeGetSpecificTime implements Serializable {

[]

/**

x Get a new destination for the passenger. This method

* returns one specific floor

**/

public void getNewDestination(Passenger PassengerObject,
DataPassengerFlow DataPassengerFlowObject) {

this.PassengerObject = PassengerObject;
this.DataPassengerFlowObject = DataPassengerFlowObiject;

SeekListOfClockOneFloor = ListOfDataClockOneFloor;

// seek throug the list of destination
if(PassengerObject.getDestination() '= —1){
while((SeekListOfClockOneFloor.getNextInList() != null)
&& (PassengerObject.getDestination() !=
SeekListOfClockOneFloor.getNextFloor())){
SeekListOfClockOneFloor =
SeekListOfClockOneFloor.getNextInList();

141

170

180

190

200

if(SeekListOfClockOneFloor.getNextInList() == null){
DayInSimulation++;
SeekListOfClockOneFloor = ListOfDataClockOneFloor;
PassengerObject.setTravelState(1);

}

else
SeekListOfClockOneFloor = SeekListOfClockOneFloor 210
.getNextInList();

setTimeData(SeekListOfClockOneFloor.getClockHour(),SeekListO
fClockOneFloor.getClockMinute(),DayInSimulation);

PassengerObject.setNewDestination(SeekListOfClockOneFloor
.getNextFloor());

} // method getNewDestination 220

public DataClockOneFloor getListOfDataClockOneFloor(){
return ListOfDataClockOneFloor;

public void setListOfDataClockOneFloor(DataClockOneFloor
ListOfDataClockOneFloor){
this.ListOfDataClockOneFloor = ListOfDataClockOneFloor;

}

230

142

Bibliography

[1] Arnold and Gosling. The Java Programming Language.
[2] Gamma et al. Design Patterns - Elements of Reusable Object Oriented Software.

[3] Lars Mathiassen et al. Objekt Orienteret Analyse og design. Forlaget Marko Aps,
2nd edition, 1998.

[4] Sum Microsystems Inc. Jdk 1.1.6 documentation. December 1998.
http://www.java.sun.com/products/jdk/1.1/docs/index.html.

[5] John Lewis and William Loftus. Java Software Solutions. Addison Wesley, 1st edi-
tion, 1998.

[6] Betrand Meyer. Applying Design by Contract. IEEE Computer, October 1998.
[7] Roger S. Pressman. Software Engineering - a Practitioners approach.

[8] Richard S. Sutton. Elevator dispatching. December 1998. WWW-
anw.cs.umass.edu/ rich/book/11/node5.html.

143

