
AALBORG UNIVERSITY
INSTITUTE OF ELECTRONIC SYSTEMS
DEPARTMENT OF COMMUNICATION TECHONOLOGIES

Fredrik Bajersvej 7 DK-9220 Aalborg East Phone 96 35 80 80

Title: Automated Lip Synchronization of Animated Characters
Theme: Acquisition and Description of Information
Project period: 6th Semester. From February 2000 to June 2000
Project group: 622

Participants:
Tonny Gregersen
Henrik Harsfort
Lars Chr. Hausmann
Peter Korsgaard
Michael Nielsen
Robert Stepien
Claus Thomsen

Supervisors:
Ove Andersen
Tom Brøndsted

Abstract

This report deals with development of a system for
Automatic Lip Synchronization of Animated Charac-
ters (ALSAC). The development is done in cooperation
with Interactive Television Entertainment Aps (ITE).
After being trained the system is able to determine a se-
quence of visemes and corresponding time stamps, which
matches a given speech signal. The system is based on
visemes and not on phonemes which is the normal ap-
proach.
For training ALSAC utilizes a clustering mechanism, in-
corporating the Dynamic Time Warping (DTW) algo-
rithm. The recognition is implemented using the One-
Pass algorithm.
Modularity is obtained by use of the Strategy Design
Pattern. This is done to ensure the possibility to change
algorithms (strategy) of the various parts independently
of the rest of the system.
The ALSAC-system is a C++ library which ITE can
use as a building block in their products.
It is concluded that a system performing the intended
task of classifying the contained sequence of visemes and
time stamps in speech signals has been implemented cor-
rectly. However the test shows that ALSAC does not
produce an accuracy score as high as required. This can
partly be explained by the fact, that the training data
used were not optimal. It is expected that with bet-
ter training data and adjusted system parameters the
performance of ALSAC can be increased. ALSAC is be-
lieved to be able to accelerate the currently manual an-
imation process at ITE, even though the system’s accu-
racy score was not found to be optimal in the system’s
present state.

Publications: 12
Number of pages: 122
Finished: 7th of June 2000

This report must not be published or reproduced without permission from the project group
Copyright c© 2000, project group 622, Aalborg University

AALBORG UNIVERSITET
INSTITUT FOR ELEKTRONISKE SYSTEMER
AFDELING FOR KOMMUNIKATIONS TEKNOLOGI

Fredrik Bajersvej 7 DK-9220 Aalborg Øst Telefon 96 35 80 80

Titel: Automated Lip Synchronization of Animated Characters
Tema: Opsamling og beskrivelse af information
Projektperiode: 6. semester, februar 2000 til juni 2000
Projektgruppe: 622

Deltagere:
Tonny Gregersen
Henrik Harsfort
Lars Chr. Hausmann
Peter Korsgaard
Michael Nielsen
Robert Stepien
Claus Thomsen

Vejledere:
Ove Andersen
Tom Brøndsted

Synopsis

Denne rapport omhandler udviklingen af et system til
automatisk synkronisering af animerede figures mund-
stillinger (ALSAC). Udviklingen er foreg̊aet i samarbe-
jde med Interactive Televison Entertainment Aps (ITE).
Efter optræning kan systemet labelere et talesignal med
en sekvens af visemer og tilhørende tidspunkter. Sys-
temet er baseret p̊a genkendelse af visemer og ikke fone-
mer, hvilket er den mest almindelige tilgang.
Til træning anvender ALSAC clustering, der indkor-
porerer Dynamic Time Warping (DTW). Genkendelsen
er implementeret vha. One-Pass algoritmen. Modular-
iteten opn̊as vha. et Strategi Design Pattern. Herved er
det muligt at udskifte algoritme (strategi) for forskellige
dele uafhængigt af resten af systemet.
Selve programmet er udformet som et C++ library,
hvilket gør det muligt for ITE at benytte ALSAC som
en byggesten i deres produkter.
Det konkluderes, at det udviklede system udfører
den ønskede opgave, best̊aende i at udtrække visem-
sekvensen og tilhørende tider fra et talesignal, korrekt.
Derimod har genkendelsesnøjagtigheden vist sig at være
mindre end krævet. Dette kan delvist forklares udfra det
faktum, at træningsdata ikke er optimale. Det forventes
at ALSAC med bedre træningsdata og finjusterede sys-
temparametre kan øge sin effektivitet. Det forventes at
ALSAC er i stand til at accelerere animationsprocessen
hos ITE, selvom systemets genkendelsesscore ikke er op-
timal i dets nuværende tilstand.

Oplagstal: 12
Sideantal: 122
Afsluttet: 7. juni 2000

Denne rapport m̊a ikke offentliggøres eller gengives uden tilladelse fra projektgruppen
Copyright c© 2000, projektgruppe 622, Aalborg Universitet

Preface

This report is the result of a 6th semester Informatics project at the University of Aalborg.
The project is made by group 622, spring 2000. The theme description for the semester is
”Acquisition and Description of Information”.

The report documents the construction of a system for Automated Lip Synchronization of Ani-
mated Characters. The report contains an outline of different theories used in speech recognition
systems. Furthermore it documents the analysis, design and implementation of a speech recog-
nition system, which is based on visemes. It should be noted that the theory outlined in chapter
2 is not meant as thorough explanation of the theoretical models used in speech recognition.
The models used in this project are explained in depth in the appendices B, C and E.

The source code for the developed system is available at http://www.kom.auc.dk/∼jacmet/inf6/
until the 1st of July 2000. Following this date the source code will only be available through
contact with the project group via email at 00gr622@kom.auc.dk.

Throughout the report citations are in the form “[authors, year of publication, specific page]”
when used in context and in the form “[authors, year of publication]” when otherwise used.
Please note that “specific page” is only included when relevant. Footnotes are numbered in
succession within each chapter and are only used when elaboration is needed. Figures and
tables are likewise numbered in succession within each chapter and references are made in the
form of X.Y, where X is the chapter number and Y is a successive number.

The project group wishes to thank the staff from Interactive Television Entertainment Aps for
their interest and support. Furthermore the project group wishes to thank Søren Østergaard
from Gekko Webdesign for designing the cover.

Aalborg University, 7th of June 2000.

Tonny Gregersen Henrik Harsfort

Lars Chr. Hausmann Peter Korsgaard

Michael Nielsen Robert Stepien

Claus Thomsen

V

Contents

1 Introduction 1
1.1 Objective . 1
1.2 The System . 2
1.3 The Report Structure . 2

2 Theory 5
2.1 Overview . 5
2.2 Speech Production . 6
2.3 Speech Perception . 8
2.4 Preprocessing . 12
2.5 Recognition Approaches . 16
2.6 Summary . 26

3 Requirement Specification 29
3.1 Preface . 29
3.2 General Description . 29
3.3 Specific Requirements . 31
3.4 Requirements for the External Interfaces . 32
3.5 Performance Requirements . 32
3.6 Quality Factors . 32

4 Choice of Method 35
4.1 Speech Data . 35
4.2 Viseme Set . 35
4.3 Preprocessing . 35
4.4 Pattern Recognition . 36

5 Test Specification 39

6 Analysis 43
6.1 Introduction . 43
6.2 Analysis of the Problem Domain . 44
6.3 Application Domain . 48

7 Design 55
7.1 Architecture . 55
7.2 Model Component . 56

VII

VIII Contents

8 Implementation 65
8.1 Changes Since the Design . 65
8.2 Core Elements of the System . 66
8.3 Profile . 66
8.4 Preprocessor . 66
8.5 Classifier . 68

9 Test 71
9.1 Component Test . 71
9.2 System Test . 75
9.3 Checklist Test . 75

10 Conclusion 83
10.1 Formal Requirements to the Project . 83
10.2 The Developed System . 84
10.3 Future Improvements . 84

A File Format Documentation 85
A.1 Viseme Format . 85
A.2 Profile Format . 86

B Feature Extraction using Linear Predictive Coding 89
B.1 The LPC Analysis . 89
B.2 Algorithm for the LPC Front-End Processor . 90

C Pattern Comparison 95
C.1 Distance Measures . 96
C.2 Dynamic Time Warping . 97
C.3 Connected Word Recognition . 102

D The Strategy Design Pattern 107
D.1 Motivation . 107

E Training Methods 109
E.1 Casual Training . 109
E.2 Robust Training . 109
E.3 Clustering . 110

F Viseme Format 113
F.1 Phonemes - From a Visual Point of View . 113
F.2 Visemes in Animations . 114
F.3 Phoneme to Viseme Conversion . 117

G Test Sheets 121

Litterature 85

List of Figures

1.1 Report structure. 3

2.1 Block diagram of the system. 5
2.2 The vocal tract. 6
2.3 Mid-sagittal plane of the human vocal apparatus [after ?, p. 186]. 7
2.4 The three parts of the human ear [after ?, p. 409]. 8
2.5 The architecture of the cochlea. Note that the corridors ought to twist 2.5 times

[after ?, p. 411]. 9
2.6 A part of the inside of the middle corridor [after ?, p. 412]. 10
2.7 Visemes have two major parameters. The lips can be rounded or unrounded and

closed or opened. Any low-detailed viseme can be placed in this map. 11
2.8 Bank-of-Filters analysis model [?, p. 72]. 13
2.9 Speech synthesis model based on the LPC model [after ?, p. 101]. 15
2.10 LPC analysis model [?, p.72] . 15
2.11 Blocking of speech into overlapping frames [?, p.114] 16
2.12 Block diagram for the pattern-recognition approach [after ?, p. 51]. 17
2.13 Overview of the DTW method [after ?, p. 126]. 18
2.14 Bottom-up knowledge based recognition. The processes are matching the speech

signal sequentially starting with the low-level units [after ?, p. 55]. 21
2.15 Top-down knowledge based recognition. The processor generates hypotheses

based on the knowledge sources (inventory, grammar, etc) [after ?, p. 55]. 21
2.16 A computation element with only one neuron [after ?, p. 57]. 22
2.17 A multi-layer perceptron network designed to classify 10 vowels. Each output

node represent a vowel. To the right the decision regions are plotted [?, p. 59]. . 23
2.18 Time-delayed neural network. The first hidden layer joins 3 feature sets from the

input. The second layer generate a feature set based on 5 sets from the first. Nine
of those classify the consonants. Thus, the decision is based on 15 input frames
(150 ms delay) [?, p. 55]. 23

2.19 Block diagram of the acoustic-phonetic recognition process [?, p. 45]. 24
2.20 Phoneme lattice for the string “All about” [?, p. 43]. 25

3.1 Training. The model is trained using speech signals and the corresponding ideal
viseme labels . 30

3.2 Recognition. The dashed lines represent the interfaces between the subsystem
and the main system . 30

6.1 Rich picture of the system . 43
6.2 Class structure . 45
6.3 State diagram of Input Speech Stream . 45

IX

X List of Figures

6.4 State diagram of Input Viseme Stream . 45
6.5 State diagram of Output Viseme Stream . 46
6.6 State diagram of Preprocessor . 46
6.7 State diagram of Feature Stream . 46
6.8 State diagram of Classifier . 47
6.9 State diagram of Profile . 47
6.10 State diagram of Reference Database . 48
6.11 Use pattern for Training . 50
6.12 Use pattern for Recognition . 50
6.13 Class diagram for the Graphical User Interface 51
6.14 Event flowdiagram for Training . 52
6.15 Event flowdiagram for Recognition . 53

7.1 Class diagram of the Model component . 56
7.2 Active objects in the Model component during training. 57
7.3 Active objects in the Model component during recognition. 57
7.4 Classifier class hiearchy . 59
7.5 Navigation diagram for the program . 61
7.6 The menus of the system . 61
7.7 The New Profile Dialog Box . 62
7.8 The Preferences Dialog Box . 63
7.9 The Train Dialog Box . 63
7.10 The Recognition Dialog Box . 64

8.1 Flow chart for the revised Modified K-Means clustering algorithm. 69

9.1 Screen shot of the test driver for the implementation of the MKM-clustering
algorithm. 74

A.1 The profile file format . 87
A.2 The classifier chunk . 88

B.1 LPC analysis model [?, p. 72] . 90
B.2 Block diagram of the LPC processor for speech recognition [after ?, p. 113] . . . 90
B.3 Blocking of speech into overlapping frames [?, fig. 3.39] 91

C.1 Time normalization (or ”warping”) of two patterns into a common time axis [after
?, fig. 4.37]. 97

C.2 Example of a distance matrix. The grey fields in the matrix represent the optimal
warping path through the matrix, when certain warping constraints are used. . . 98

C.3 Local continuity constraints. Read as ”where came I from”not ”where can I
go”[after ?, p. 211]. 99

C.4 Maximum and minimum slopes for different types of local path constraints [after
?, p. 214]. 100

C.5 Global path constraints [after ?, p. 215]. 100
C.6 Slope weighting for the four types of weighting. Weights are shown before and

after redistribution along paths [after ?, p. 218]. 101
C.7 The one-pass algorithm. The time-warping is done in all reference patterns si-

multaneously [after ?, p. 43]. 103
C.8 Different path constraints are used when inside and when between the reference

patterns [after ?, p. 3]. 104

D.1 Structure of the design. 108

F.1 Viseme set adapted for MPEG4. 115

List of Figures XI

F.2 Viseme set adapted to phonemes of ALSAC. 116
F.3 Universal composition of a syllable [after ?, p. 138]. 118
F.4 Illustration of the algorithm used to convert an EUROM1 phoneme stream into

an ALSAC viseme stream. 119

List of Tables

2.1 Examples of context sensitive phonemes. 11
2.2 Characteristics of the preprocessing methods . 27
2.3 Characteristics of the recognition approaches . 28

5.1 Test of the basics in ALSAC . 40
5.2 Test of the recognition done by ALSAC . 40
5.3 Visual test of the recognition done by ALSAC . 41

6.1 Events and affected objects . 49

9.1 Pseudo random numbers used to test the recognize function of the segmentator. . 72
9.2 Result of testing the recognize function of the segmentator. 73
9.3 Result of testing the train function for the segmentator. 73
9.4 Results of the checklist test . 76
9.5 Results of the base system test. 77
9.6 Performance test matrix. 78
9.7 Order of test viseme streams. 80
9.8 Recognition performance test for stream 1 . 80
9.9 Recognition performance test for stream 1 . 81
9.10 Recognition performance test stream 2 . 81
9.11 Recognition performance test stream 2 . 81
9.12 Recognition performance test 3 . 81
9.13 Recognition performance test 3 . 81

F.1 Vowel in SAMPA ordered by openness and roundness. 113
F.2 Identification of visemes for consonants in SAMPA. 114
F.3 MPEG4’s phoneme to viseme mapping. 114
F.4 SAMPA phonemes mapped to visemes in F.2.

C: Consonant, V: Vowel
u: Unrounded mouth, r: Rounded mouth
R: repeat . 117

G.1 Speaker 1 . 121
G.2 Speaker 2 . 121
G.3 Speaker 3 . 121

XIII

CHAPTER 1

Introduction

1.1 Objective

According to the theme of this semester “Acquisition and Description of Information” the ob-
jective of the semester is according to [?]:

• to give the students an understanding of how physical measurable data can be transformed
into abstract information.

• to enable the students to make a synthesis of theories, methods and techniques for acquisi-
tion of signals, signal to symbol transformation, and to generate an abstract representation
of the relevant information.

• to enable the students to use theories, methods, and techniques to design and implement
systems for information acquisition and processing.

In order to be able to evaluate the above mentioned objectives the Study Board has issued some
requirements concerning the contents of the project:

On this semester the focus is to gather, represent and process abstract knowledge. With
a starting point in a specific problem description the student should work with gathering
the necessary information and represent it on abstract form. This involves that the stu-
dent obtains knowledge on how the information is extracted from the information carrying
signals, how this information can be represented as symbols and how these symbols can be
processed. The interesting information would typically originate from physical signals but
can also be available in another forms.
[?]

In order to satisfy the objectives of this semester the project group has decided to develop a
system for automated lip synchronization together with Interactive Television Entertainment
Aps (ITE). ITE wants to use this system for complete automated synchronization of their
animated cartoon characters or at least be able to use it as a tool to help them in the current
process. In essence the system should be able to give the matching mouth positions and time
stamps as output to a given input speech signal.

The system to be developed is primarily to be used in the development of computer games all
though ITE would also like to use the implementation for Real-Time purposes such as TV game
shows.

1

2 Introduction

The next section will describe how ITE currently handles the task of lip synchronization and
what the system to be developed should be capable of.

1.2 The System

1.2.1 ITE’s Current Method

The following is based on information on from a meeting with ITE the 15th of march 2000.
At ITE lip synchronization of animated characters is presently done by hand. When a new
computer game is being developed, a number of employees listen to the recorded speech and
then manually decides which of the mouth positions best fits the given speech. Using this process
it takes one person approximately one hour to process 1 MB of speech recorded in 22kHz 8 bit
mono.

In order to aid their employees during the lip synchronization ITE has originally developed a
tool called Out-Of-Sync (OOS) which is capable of visualizing the synchronization.

The OOS program uses a rather simple format to describe how the mouth positions should
be during the animation. This format only changes the mouth positions 8.3 times per second,
which means that the time a character has the same mouth position is at least 120 ms. With
this low frame rate the resulting animation will some times look rather rigid. Furthermore the
OOS format has a rather limited scheme for mouth positions - there is currently only about 12-
15 mouth positions available. This can be used in ordinary 2-dimensional (2D) games, though
the animation will be rough, but is not detailed enough for 3D-animation. Thus ITE wants to
develop a greater set of mouth positions in order to use OOS for 3D-animation.

The greatest problem is however not with the OOS program, but primarily with the fact that
all of the synchronization has to be done manually. It would cause a significant cut in expenses
if this procedure could be automated. It need not be a perfect output, it would still be a big
improvement if just some of the mouth positions would be correct using an automated tool,
hereby making it easier for the animators.

1.2.2 The Desired System

ITE wants a system that is able to automatically generate the matching mouth positions from a
given speech signal. The system should ideally be independent of speaker, language and animated
character. Furthermore the system should be ready for integration with the a program that ITE
is currently developing to replace the visualization part of OOS.

1.3 The Report Structure

The following report is made using a combination of Structured Analysis & Design as defined
in [?] and Object Oriented Analysis & Design as defined in [?].

The report will begin with a brief introduction to the speech recognition theory. This will be
followed by an outline of the requirements of the system to be developed. These requirements
will be presented in a requirement specification as outlined in [?]. The structured approach has
been chosen in order to ensure mutual understanding between ITE and the project group of the
system to be developed. This is particularly important in this project as the developed system
is to be incorporated in a greater system under development by ITE. Following the requirement
specification the speech recognition theory and the requirements will come together to form a
detailed view of how the system is to be developed. The discussion concerning how this is done
will be outlined in the“Choice of method”chapter. After this chapter follows a test specification,
which describes how the system is to be tested.

1.3 The Report Structure 3

Once the system has been outlined the actual system development is done using Object Oriented
Analysis & Design (OOAD). The object oriented approach has been chosen due to the fact
that the system ITE is developing is to be designed and implemented in an object oriented
environment (C++). The documentation of the system development process will be presented
in the 3 chapters: Analysis, Design, and Implementation and as this project is not a project in
Object Oriented Analysis & Design only the crucial parts of the process will be documented.

Finally the developed system will be tested as specified in the test specification. Following this
the results will be discussed in the “Conclusion” chapter. It should be noted that in addition to
the theory presented within the report some subjects will be elaborated in the appendices.

The actual division of the report into chapters is shown in figure 1.1. Each box in the figure
illustrates a chapter in the report.

���������
	

�������� �����������

��������� �! "�#%$�& '�(

)+*�,�- .�/10�243�5%6�7�8�9

:<;�=%>@?�A%B�C�D E!F G�H%I�J K�L

MON%P�Q R@S�T U

VW�X�Y Z�[

\]_^�` a�b�c�d�egf%h
i j�k

l<m�n%o

prq�s�t�u v�w�x y�z

{}|�~�������� �

Figure 1.1: Report structure.

In the following the chapters and their objectives will be outlined:

Theory
The primary concern of the theory chapter is to bring the reader to a basic understanding

4 Introduction

of the theories used in most speech recognition systems. Furthermore the objective is to
give the foundation for the choice of solution that has to be made in order to implement
the system.

Requirement Specification
The purpose of the requirement specification is to determine the requirements for the
system based on the needs and wishes of ITE and the project group.

Choice of Method
The purpose of the choice of method chapter is to present a detailed view of the system
to be developed and discuss the choices made based on the Theory and Requirement
specification chapters.

Test Specification
The test specification specifies the different tests which will have to be made in order to
test whether the developed system meets the requirements specified in the requirement
specification.

Analysis
The purpose of the analysis chapter is to gain an insight in the elements, use patterns,
function and interfaces of the desired system.

Design
The purpose of the design chapter is to gain an insight in the structure of the analyzed
system and its processes, classes and interfaces.

Implementation
The purpose of the implementation chapter is to describe crucial parts of the implemen-
tation of the designed system.

Test
The objective of the test chapter is to describe the tests that the project group has per-
formed to make sure the implemented system acts according to the requirements.

Conclusion
The objective of the conclusion chapter is to outline the results for this project. Further-
more it is evaluated whether the project group has met the requirements for the report set
by the Study Board.

Appendix
The objective of the appendices is to elaborate on theoretical subjects presented in the
theory chapter. Furthermore additional details on various aspects of the system are cov-
ered.

CHAPTER 2

Theory

This chapter will give the reader a brief introduction to the basic theories of speech recognition.
Futhermore it will help determine which method or methods is to be used in this project.

2.1 Overview

The system to be developed will consist of the 2 parts: preprocessing and recognition. The input
to the system is a speech stream and it produces a viseme stream as output. A block diagram
of the system can be seen in figure 2.1.

Preprocessing RecognitionSpeech Visemes

Figure 2.1: Block diagram of the system.

In the following sections the basic theory behind creating a system for speech recognition will be
discussed. The subject of this discussion is as visualized in figure 2.1 and the general structure
of the discussion is as follows:

Speech
Since the system to be developed is essentially a system for recognizing speech the funda-
mentals of human speech production and perception are presented in section 2.2 and 2.3.
A general description of visemes is included in the speech perception section.

Preprocessing
In order to make a reliable comparison between two speech signals a number of character-
istics should be extracted from the signals. The concept is to compare the characteristics
(features) of each signal, instead of comparing the signals directly. Thus finding appropri-
ate and robust features is extremely important at this stage. Two approaches which can
be used to make the preprocessing is described in section 2.4.

Recognition
The features from the preprocessing are used to determine which of the visemes (mouth
positions) that best matches the current speech input. Four different approaches to recog-
nition are described in section 2.5.

5

6 Theory

2.2 Speech Production

In order to achieve a basic understanding of the theory used in systems for speech recognition
it is useful to gain an understanding of the basic properties of speech production. The basic
theory behind speech production is described in the following section.

2.2.1 The Vocal Tract

Human speech is produced by pressing air out of the lungs. The air is pressed through the vocal
tract hereby producing sounds at the other end of the vocal tract.

The vocal tract begins at the vocal cords (glottis) in the throat and ends at the lips and nostrils.
It consist of the pharynx (the throat cavity) and the mouth (oral cavity). The vocal tract is
shown in figure 2.2.

Figure 2.2: The vocal tract.

The Pharynx

The throat cavity (pharynx) is a tube leading from the wind pipe (trachea) to the oral cavity.
The vocal cords (glottis) are placed at the bottom of the throat cavity (pharynx) (see figure
2.2). These are the source of the produced sounds in the speech. The muscle force pushes the
air out of the lungs and through the bronchi (bronchiolus) and wind pipe (trachea). When the
air flows by the vocal cords (glottis) a sound is made.

It is custom to divide speech into three categories according to the state of the vocal cords
(glottis). The first speech-category is unvoiced speech in which the vocal cords (glottis) are
relaxed. Unvoiced speech is either made by air flowing past the relaxed vocal cords (glottis)
hereby creating turbulent unvoiced sounds. It can also be made by a build up of pressure
behind a total closure in the vocal tract which causes a brief transient sound e.g. /p/ or /b/.
This is so due to the pressure being suddenly and abruptly released when the closure is opened.
The second speech-category is voiced speech where the vocal cords (glottis) are tensed. Voiced
speech is created by air flowing past the tense vocal cords (glottis) thereby making them vibrate
periodically. Sound produced is this way can be distinguished by the frequencies at which vocal
cords (glottis) resonates. Their resonant frequencies are also known as formants. The final
category is silence where no speech is produced.

2.2 Speech Production 7

Figure 2.3: Mid-sagittal plane of the human vocal apparatus [after ?, p. 186].

The Mouth

The mouth consists of the mouth cavity and the nasal tract.

The mouth cavity begins at the upper part of the pharynx and ends at the lips. The position
of the lips, jaw, and the tongue alters the sound coming from the pharynx.

The nasal tract is a cavity that begins at the velum (at the upper part of the pharynx and
the back of the mouth cavity) and ends at the nostrils. When the velum is lowered the sounds
produced in the pharynx are allowed to enter the nasal cavity adding nasal sounds in the final
speech signal.

2.2.2 Phonemes

Speech is produced as a sequence of sounds. These sounds (or phones) are distinguished by the
difference in their spectral contents. In vowels this difference is primarily detected by the spacing
and amplitude of the resonance frequencies (or formants) created due to the voiced nature of
these signals. Since consonants can be both voiced and unvoiced distinguishing between these
are however not that simple. The only way distinguishing between different consonants is to
look at changes to their spectral contents.

At a higher level the phones of a given speech signal can be combined to form a sequence of
units that makes more perceptive sense. These units are called phonemes and are determined
by the following conditions of the vocal tract:

• The state of the vocal cords

• The position of the lips

• The position of the jaw

• The position of the tongue

• The state of the velum

8 Theory

The length of each phoneme can differ in time. The shortest duration of phonemes consisting of
one phone is between 5 and 100 ms. During this time the vocal tract parameters are considered
approximately stationary. It should be noted that phonemes differ from language to language
and so does the number of phonemes.

2.3 Speech Perception

When modeling a system for speech recognition it is useful to know how humans perceive speech.
This can be done using only the speech signal (sound perception), but it can also be done by
combining the speech with the visual image of the talking mouth (visemes). The objective of the
following section is to present the fundamentals of both auditory and visual sound perception.

2.3.1 Sound Perception

In order to understand how humans perceive sounds it is useful to know how the human ear is
constructed.

The ear is normally divided into three regions. These are called the outer ear (auris externa),
the middle ear (auris media), and the inner ear (auris interna). The three regions are shown in
figure 2.4.

Figure 2.4: The three parts of the human ear [after ?, p. 409].

The Outer Ear

The outer ear consists of the auricula and the external canal (meatus acusticus externus). The
auricula guides the soundwaves through the external canal to the ear drum in the inner ear.

2.3 Speech Perception 9

The Middle Ear

The middle ear consists of the ear drum (membrana tympani) and the drum cave (cavum
tympani) which contains the hammer (malleus), the anvil (incus), and the stirrup (stapes).
The hammer is attached to the ear drum and touches the anvil which is attached to the stirrup.
The stirrup is attached to fenestra ovalis in the inner ear.

The soundwaves reach the ear drum through the external canal. They cause the ear drum
to move hereby moving the hammer, anvil, and the stirrup. The hammer and anvil amplifies
the sound waves due to their construction and causes the stirrup and fenestra ovalis to move.
Another amplification factor is caused by the scale between the ear drum (big surface) and the
stirrups surface connected to fenestra ovalis (little surface) (see figure 2.4).

The Inner Ear

The inner ear consists of bone canals filled with liquid. These canals are often referred to as the
labyrinth. It consists of three parts; the cochlea, canales semicirculares, and vestibulum. The
cochlea is used for hearing and the two others are used for balance.

The cochlea looks like a snail shell (see figure 2.4 and 2.5). The spiral staircase twists 2.5
time around a bone pillar and contains three corridors. The upper and the lower corridors are
connected at the end of the spiral staircase. The inner corridor on the other hand is closed. It
contains about 25000 thin hair cells from the beginning of the inner corridor to the end.

Figure 2.5: The architecture of the cochlea. Note that the corridors ought to twist 2.5 times [after ?, p.
411].

When fenestra ovalis is moved by the stirrup it produces a wave through the liquid in the cochlea.
The wave spread from the bottom of the snail shell through the upper corridor and down through
the lower corridor to fenestra rotunda. Fenestra rotunda is an elastic membrane that dampens
the reflection of the wave. The wave transfer from the upper corridor to the lower corridor causes
a wave motion in the middle corridor which reaches its maximal oscillation where the resonance
frequency is identical to the sound frequency. The hair cells at this point will begin to swing and
the nerve attached to the hair cells will send nerve impulses to the brain. The inner corridor is

10 Theory

shown in figure 2.6. An interesting remark is that low frequencies will cause the hair cells in the
lower part to vibrate and high frequencies will cause hair cells in the upper part to vibrate.

Figure 2.6: A part of the inside of the middle corridor [after ?, p. 412].

Modeling the Ear

The ear is used as a model for auditory systems, because it is assumed that doing so will cause
the system to inherit some of the advantages of the ear (among other things immunity to noise
and reverberation).

The human ear is able to hear sounds in the range from 20Hz-20kHz. Due to the construction
of the ear it acts as a logarithmic filter. In effect this means that humans are better at detecting
small frequency variations in the lower range of the spectrum, because it is as difficult to hear
the difference between sounds at 200 and 300 Hz as it is to hear the difference between sounds
at 2000 and 3000 Hz.

2.3.2 Visemes

Visemes refer to what can be seen when a person speaks. That is the lips, teeth, and possibly
the tongue depending on how detailed the visemes are and how much the speaker articulates.

Visemes are important for human speech recognition, because seeing the movement of the mouth
can help people understand what is being said. Due to the fact that humans have learned how
the mouth should appear during speech it would seem unnatural if the mouth in animations
does not follow the usual movements. This is the main reason for wanting a correct stream of
visemes in animations.

Visemes in Animation

In general visemes can be described using mere two parameters. The roundness and the open-
ness of the mouth. Using these two parameters one can describe the necessary visemes for an
animation. The two parameters are illustrated in figure 2.7.

The visemes are affected by the phonemes, which are differ depending on how the vocal tract is
shaped. Not all phonemes affect the visemes to the same degree. Basically, vowels affect both
the roundness and openness of the lips, whereas consonants only affect the openness. Thus, the
vowels affect the surrounding consonants in a syllable. The visemes for the consonants will be
shaped as the vowel in the syllable. Table 2.1 shows examples of how vowels affect consonants.

The duration of the visemes is also different. When animating speech at normal rate the most
apparent visemes are the closed ones compared to the rest. They are usually the shortest

2.3 Speech Perception 11

Figure 2.7: Visemes have two major parameters. The lips can be rounded or unrounded and closed or
opened. Any low-detailed viseme can be placed in this map.

Phoneme Example Explanation
l reel Viseme for /l/ depends on the previous viseme.
t tool Viseme for /t/ depends on the next viseme.
h high The next phoneme defines the viseme for the /h/
s soothsayer The /oo/ affects the previous as well as the next viseme.
s wise Viseme for /s/ depends on the previous viseme.
z zebra Viseme for /z/ depends on the next viseme.
h sahara The next phoneme defines the viseme for the /h/
s sigh The /i/ affects the previous as well as the next viseme.

Table 2.1: Examples of context sensitive phonemes.

12 Theory

visemes, too. Thus, it is important that the closed lip visemes (such as /m/, /b/, and /p/) are
synchronized correctly in order to create a convincing animation [?].

2.4 Preprocessing

This section will describe the preprocessing of a sampled speech signal, so that it may be used in
a recognition scheme. More precisely this section will deal with the aspect of extracting features
from a speech signal. It is presented through a brief summary of the two methods mostly used:
the Bank-Of-Filter method and the Linear Predictive Coding (LPC) model (see [?] for more
information).

It should be noted that it is not the aim of the following text to give a precise mathematical
representation of the methods, but merely to serve as an introduction to the subject.

2.4.1 Feature Extraction

The general principle of feature extraction is to identify a simple measurable entity a so-called
feature which accurately characterizes a given object. Considering that the object is a sampled
speech signal of a given length, two measurable entities comes to mind:

• The spectral content of the signal

• The energy of the signal

However in order to use these measurements a number of issues will have to be considered.
These issues are primarily regarding extraction of a feature which is both simple and robust.

The problem of creating a simple and parsimonious measurement can to a certain degree be
solved by looking at the properties of the speech signal. In section 2.2.2 it was stated, that a
speech signal could be considered approximately stationary over a short period of time (between
5 and 100 ms). By using this fact to divide the sampled speech signal into a sequence of frames
of between 15 and 45 ms the number of feature necessary can be greatly reduced. This will
create a significant simplification of the signal without loss of information. It should be noted
that the limit on 45 ms is due to the fact it is phones and not phonemes that are to be considered
approximately stationary spectrally speaking. This and the fact that phonemes can consist of a
series of phones makes it highly unlikely that the signal would be approximately stationary for
over 45 ms (see [?] for more information).

Finally there is the general problem of extracting robust features that accurately characterizes
the speech signal. There are a number of issues that must be considered in order to solve this
problem, but all of them are connected with the basic properties of the speech signal.

First and foremost there is the problem of characterizing the speech signal with the full signal
spectrum at a given time. This approach will result in a huge amount of redundant data and only
representing the actual frequency band of speech (the vocal spectrum) should be considered.

Another issue that must be considered in order to accurately represent the vocal spectrum is the
distribution of information within a speech signal. In section 2.3.1 a model of the human ear was
presented and it is worth noticing that the spectral envelope was perceived on an approximation
to a log-scale meaning that the spectrum between 200-300Hz and 2000-3000Hz will be of equal
importance.

Reflecting upon past discussions it seems evident that a meaningful measurement characterizing
a given speech signal should consist of a sequence of frames with the vocal spectrum of each
frame being represented on a log-scale. This feature is however not sufficient in a recognition
scheme because of the need to know the energy in the signal at a given time in order to estimate

2.4 Preprocessing 13

the start and endpoint of a given entity within the speech signal (e.g. a single word). Therefore
the ideal feature should be a combination of both the energy and spectral content of the signal.
The following section shows how this combination can be achieved.

2.4.2 Feature Extraction Methods

As mentioned in the beginning of this section, there are two commonly used approaches for
extracting features from speech signals: the Bank-Of-Filters model and the LPC model.

The Bank-Of-Filters Model

The Bank-Of-Filters or filter-bank model is characterized by the use of Q bandpass-filters cov-
ering the frequency range of the speech signal as viewed in figure 2.8. The output of the ith
bandpass filter Xn(ejωi) is the short-time spectral representation of the signal s[n] at time n
seen from the ith bandpass filter with center-frequency ωi and the length Mi.

Figure 2.8: Bank-of-Filters analysis model [?, p. 72].

The filtering process can be described as:

si[n] = s[n] ∗ hi[n] where 1 ≤ i ≤ Q (2.1)

=
Mi−1∑
m=0

hi[m]s[n−m] (2.2)

The purpose of dividing the signal in this way is to extract the spectral contents of the speech
signal in a given frequency band for a duration of Mi samples. The energy of the signal in each
of the frequency bands can then be found and the measurement thereby fulfills the requirements
for a feature to represent both the energy of the signal and its spectral content.

It should be noted that the filters in general overlap to ensure full spectral coverage which
otherwise would be impossible because of the frequency response associated with the use of
bandpass-filters.

14 Theory

When choosing which filters to use there are two choices:

• IIR-filters

• FIR-filters

IIR can be implemented in simple and efficient structures, but they have a non-linear phase
characteristic which is unfortunate as it would cause the signal to be distorted. FIR-filters
can achieve linear phase without compromising the ability to approximate ideal magnitude.
However FIR filters have the disadvantage of being computational demanding in implementation,
although a Fast Fourier Transform (FFT) realization can be used to minimize the computational
demands.

There are also two different kinds of implementations of the filter-bank:

Uniform: the filters have equal bandwidth.

Nonuniform: the bandwidth of the filters are not equal.

The nonuniform approach is usually implemented because of the ability to base the spacing
of the filters on perceptual studies and thereby fulfilling the requirements for a feature which
accurately represent the information within the speech signal.

When the filter type has been decided one has to choose the number of filters used. Generally it
is important that the number of filters is not too small because that would reduce the filter-banks
ability to resolve the speech spectrum. Likewise the number of filters cannot be too large since
that would make the bandwidth of the filters too narrow for some talkers (i.e.. high pitch talkers
like women or children) unless there is a considerable overlap in the filters. This is so because
the energy spectrum of the high pitch talkers is narrower than low pitch talkers and hence there
is a bigger chance that the energy spectrum might lie between two filters if the number of filters
is too high. In practise it has been proven that the ideal number of filters to be used lies between
8 and 32 (taken from [?, p. 93]). The precise number of filters depends on the sample rate of the
signal as this will directly influence the number of resonance peaks (formants) of a given voiced
sound.

Characteristics of the Filter-Bank Model

One of the advantages of using filter-banks is that one gets a large reduction in the bit-rate
of the signal, because the signal is sampled and convoluted with a bandpass filter. This will
hopefully result in an improved representation of the significant information in the speech signal.
In addition it is possible by adjusting the spacing of the bandpass-filters to generate a model
which describe the distribution of the information in the speech signal.

The major disadvantage of using filter-banks is that they are computationally demanding when
realized in software which is true for both the IIR and FIR implementation. It should also be
noted that althrough the model will extract features in a straight forward manner it is done
without much thought to the physiological properties of the source.

The Linear Predictive Coding Model

Like the Bank-of-Filters model the purpose of the LPC model is to extract features from the
speech signal through spectral analysis. The way in which the LPC model is implemented
is however significantly different from the Bank-of-Filters model. While in the Bank-of-filters
model the spectral content of the signal is derived though an array of bandpass-filters the LPC
model takes advantage of the way humans produce speech in order to derive the spectral content.

2.4 Preprocessing 15

The basic idea behind the LPC model is, that a speech sample s[n] at a given time can be
expressed as a linear combination of the past p speech samples, such that

s[n] =
p∑

i=1

ais[n− i] +Gu[n], (2.3)

where the coefficients a1, a2, ..., ap are assumed constant over a given time frame and the nor-
malized excitation u[n] and the gain of the excitation G represent the base of the signal at time
n = 0. By expressing s[n] in the Z-domain and extracting the transfer function

H(z) =
S(z)
GU(z)

=
1

1−
p∑

i=1

aiz
−i

(2.4)

it can be shown that a signal at a given time can be synthesized by using the scaled excitation
Gu[n] as input for an all-pole system H(z). Figure 2.9 shows how a given speech signal can be
synthesized. As mentioned in section 2.2 the normalized excitation for human speech is either
voiced speech (essentially a quasiperiodic pulse train) or unvoiced speech (essentially a random
noise sequence). By scaling the human excitation by the gain G and using this scaled excitation
as the input for the all-pole system H(z), the full vocal range can be synthesized. From this
synthesis model it becomes clear that the all-pole system H(z) is a time-varying digital filter
modeling the vocal tract with the coefficients a1, a2, ..., ap as the filter-coefficients.

� ������� ���
	�
��� �

�����������������

���! �"�#�$
%�&�' (*)

+�,�-�.�/�0�1�2�3

4

576�8 9�:�;�<
=�>@?BA�C D�E�F
G�HJI KML!N

O!P QSR�T�UBV!WYX�Z [�\
]�^ _�` a�b�c
dfe g h�i�j

k

l!monqp

Figure 2.9: Speech synthesis model based on the LPC model [after ?, p. 101].

The method used to implement the LPC model can be divided into 3 parts, each of them will
be described briefly. The individual parts and how they interconnect can be seen in figure 2.10.

��� �����	�
��������������� ���������� �!#"%$%&('
)(*�+�, -/.�0 1

2�3�465�7(8%9�:�;#<>=�?
@�A�B�C/D(E%F�G H�I

J K

Figure 2.10: LPC analysis model [?, p.72]

The purpose of the first part “block into frames” is to divide the speech signal into a number
of frames with a length of N samples in which the signal is considered approximately stable.
As previously mentioned frame segmenting works because a speech signal can be considered
approximately stationary over a short period of time. It should be noted that adjacent frames

16 Theory

will overlap with N − M samples in order to ensure full coverage of the signal through the
following spectral analysis. The process of frame blocking can be seen in figure 2.11.

Figure 2.11: Blocking of speech into overlapping frames [?, p.114]

The next part is the actual process of determining LPC coefficients and this is mostly done
through a method called autocorrelation. The autocorrelation method works by minimizing the
average error between the actual and the approximated signal. The output of this process is p
coefficients from where the first coefficients determines the energy of the signal within the given
frame. The actual p LPC-coefficients are then determined by applying the Levinson-Durbin
algorithm to the autocorrelated coefficients. The number of coefficients, p, are determined
from previous implementation of the LPC-model and values between 8 and 16 are considered
appropriate in a recognition scheme [?, p. 114]. The actual analysis-order is, as the number
of filters in Bank-of-Filters, dependent upon the sample rate of the signal as all the resonance
peaks (formants) will have to be represented.

The final part consists of converting the LPC-coefficients into a more robust representation of the
signal called cepstral-coefficients. These coefficients are a spectral representation of the signal
on a logarithmic scale.

Characteristics of the LPC Model

The LPC model has been widely used in speech recognition systems and there are several reasons
for using the LPC method instead of the filter-bank method according to [?, p. 98]:

1. LPC models the speech signal. This is especially true for the quasi steady state voiced
regions of speech in which the all-pole model of the LPC provides a good approximation to
the vocal tract spectral envelope. It is less effective during unvoiced regions than for voiced
regions but it still provides an acceptably useful model for speech recognition purposes.

2. LPC gives a parsimonious representation of the vocal tract characteristics.

3. LPC is mathematically precise and is simple and straightforward to implement in either
software or hardware. The computation involved in LPC processing is considerably less
than that required for an all-digital implementation of the bank-of-filters model.

4. Experience has shown that the performance of LPC used in speech recognizers is compa-
rable or better than that of recognizers based on filter-bank [?, p. 98].

2.5 Recognition Approaches

In the following an overview of the different approaches available for doing the speech recognition
task will be presented. The strengths and weaknesses of each of them will be examined and
outlined to establish the basis for a proper choice of method.

2.5 Recognition Approaches 17

The approaches can roughly be categorized as follows:

1. Pattern-Recognition approach

2. Artificial Intelligence (AI) approach

3. Artificial Neural Networks (ANN) approach

4. Acoustic-Phonetic approach

It should be noted that all through Artificial Neural Networks (ANN) are primarily used as an
extention to the other 3 approaches mentioned it can also be used as a stand-alone recognizer
and this is why it has been placed on the same level as the other approaches.

In the following the basic ideas behind each of the methods will be presented.

2.5.1 Pattern-Recognition Approach

The Pattern-Recognition approach can be split into four major steps as listed below:

1. Feature measurement

2. Pattern training

3. Pattern classification

4. Decision logic

A block diagram illustrating this approach is shown in figure 2.5.1.

������� �	��
 �
��	�������

�������������
�! #"�$ %'& (�)

*,+�-/.'0 1�2�3'4
5�687:9';'<�= >

?�@�A�B�C�D�E
F�G H'I'JLK MON PLQ

RTS'ULV W�X Y�Z
[\']�^ _

`ba�c'd'e�fhg�ikjml n,o'p�qr�s�t�u�v�w�x yTz�{}|�~#�����'�
���������������

�T�'�'�'�L�'� ���'�
�L���'�'���

���'�'���¡ L¢ £�¤�¥�¦�§'¨ª©:«'¬'�®,¯±°
²�³µ´�¶�·/¸ ¹»ºL¼ ½:¾�¿ÁÀ�Â�Ã'Ä Å�Æ

Figure 2.12: Block diagram for the pattern-recognition approach [after ?, p. 51].

Feature Measurement

At this common step a number of characteristics (features) are extracted from the input speech
signal as described in section 2.4 in order to make a reliable comparison.

Pattern Training

In this step one or more test patterns corresponding to sounds of the same class are manipulated
to determine a pattern representative for the features of the actual class. The pattern created
from this process are called a reference pattern (or a template). It can either be derived with
some averaging technique or constructed by a model that uses statistical information from the
features in the test patterns. The most commonly used template training methods include:
Causal training, Robust training and Clustering. Refer to appendix E for details on these
methods.

18 Theory

Pattern Classification

In this step the test pattern (the feature vectors from the speech to be recognized) is compared
to the reference patterns and a score measuring the similarity between the test pattern and
each of the reference patterns is computed. In order to make these comparisons a local distance
measure as well as a global time alignment mechanism is required. The local distance measure is
needed because comparing speech patterns involves computation of local distance between each
of the spectral vectors that constitute the speech patterns. Thus, an important decision at this
stage is which distance measure the recognizer should implement. A wide number of measures
are known, each with their strengths and weaknesses depending on the specific system to be
implemented. A more detailed description of the considerations involved in finding an optimal
distance measure is given in appendix C.1. Aligning and nonlinearly comparing two speech
patterns is known as Dynamic Time Warping (DTW). A detailed description of this method can
be found in appendix C.2.

The DTW time-aligns and compares two speech patterns X and Y consisting of the feature
vectors x1, x2, ..., xTx and y1, y2, ..., yTy . The result of the DTW is a global distance d(X,Y),
which allows a test-pattern X to be compared to a number of reference patterns Y by comparing
the global distances. Because speech production is (almost always) realized at a different rate,
the number of feature-vectors, Tx and Ty are (typically) not the same, and the indices ix and iy
into the two patterns (mostly) does not line up linearly.

Figure 2.13 shows this nonlinear connection when comparing two patterns of the same spoken
word. The DTW method “warps” the speech patterns being compared to a common time-axis
by shrinking and stretching the patterns.

X (test pattern)
Tx1

1
T

 y

T
 y

Tx

1

ix

i y

1

Y
 (

re
fe

re
nc

e
pa

tte
rn

)

ix

i y

i y

ix

x

y

iy� = w(i x)

Figure 2.13: Overview of the DTW method [after ?, p. 126].

The warping is done by finding the optimal warping function iy = w(ix) (which is generalized
to φ = (φx, φy) in appendix C.2). The simplest solution for the warping function is when the
two patterns compared are equal. Then iy = ix and thus w(ix) = ix, giving a straight diagonal
warping path. In the general case, the optimal warping function is found when the global
distance is minimized:

2.5 Recognition Approaches 19

d(X,Y) = min
w(ix)

Tx∑
ix=1

d(ix, w(ix)) (2.5)

where d(ix, w(ix)) is the local distance (between the feature vectors). The solution to the above
equation can be obtained efficiently by using dynamic programming techniques, which is a widely
used tool for solving sequential decision problems.

Decision Logic

Finally the last step is to decide which of the reference patterns match the test pattern best. Of
course this decision is based on the computed scores in the pattern classification step.

When the units to be recognized are connected (with no silence between them), a connected
word recognition algorithm must be used. [?] describe three algorithms for this task:

• The two-level dynamic programming approach

• The level building approach

• The one-pass (or one-stage or one-state) algorithm

The algorithms basically perform the same task of finding the best sequence of connected words
(or visemes in our case). The main differences of the algorithms are in computational load,
memory requirements, and the sequence in which the computations are carried out. In appendix
C.3 the connected word recognition problem is described in general and the one-pass algorithm
is described in detail.

It is possible to embed a decision support system (represented by e.g. AI) or adapt some grammar
to improve the correctness of the decisions made by the recognizer. This is an improvement since
it is not arbitary which viseme can follow the previous viseme.

Characteristics of the Approach

In the following the strengths and weaknesses that characterize the Pattern-Recognition ap-
proach will be outlined as stated in [?].

Advantages:

• The approach is insensitive to the choice of vocabulary words, task, syntax and task
semantics, because no speech-specific knowledge is explicitly used.

• It is applicable to a wide range of speech units covering. phrases, words and sub-word
units (visemes)

• It features an easy incorporation of syntactic and semantic constraints to improve the
recognition accuracy and limit computations.

Disadvantages:

• The reference patterns are affected by the speaking environment and characteristics of the
medium used to convey the speech.

• The recognition is speaker dependent.

2.5.2 Artificial Intelligence Approach

Analyzing sounds without thought can lead to errors when the sounds are somewhat similar.
The words “come” and “run” or “hut” and “hot” sound almost the same, but change the actual

20 Theory

meaning, for example “Good ideas run when least expected” - “It sure is hut today”. It is easy
for a person to realize the errors but the standard pattern recognizer cannot.

This is the motivation that leads to AI speech recognition. It is a study connected to cognitive
psychology. The following will describe the human perception processes briefly in order to
understand the intelligence, which is the foundation of speech perception.

Human Perception

The acoustic input signal is analyzed giving spectral information, which is stored in a sensory
information store. This sensory information store holds other relevant info such as visual input
and scents. Focusing on the auditory information, it is analyzed in various processes in neural
nets in the brain. The analysis is controlled by the short- and long-term memory.

Lexical, syntactic, and semantic processes analyze the phonetic feature combinations. The
context and other senses are included in order to fully understand the information at hand.

For example, if the next sentence would be “Then add flower and stir gently” the reader of this
text would wonder right away, because it is out of context. The sentence “Power plants colorless
happily old” makes no sense syntactically nor semantic.

Another interesting observation is the tendency for a person to manifest an image of the entire
meaning of a message after the first few percepted words. The more previous knowledge and
experience a person has regarding the topic, the easier it is to “guess” the correct meaning. The
knowledge and experience is stored in a cognitive framework for later use.

These are the considerations that are the foundation of using artificial intelligence in speech
recognition.

When using artificial intelligence in speech recognition it is mainly used for identifying and
simulating the cognitive processes in the brain. Futhermore the acoustic, lexical, and semantic
knowledge can be used to classify the speech.

Knowledge Based AI

There are two well-known types of knowledge based speech recognizer designs, bottom-up and
top-down processors. The common problem is that they need huge knowledge sources regarding
syntactical, lexical, acoustic, semantic, and language models. This knowledge must be catego-
rized, structured, and modeled like the cognitive framework of the human brain.

The bottom-up processor analyses the low-level processes such as acoustic feature analysis. Then
it sequentially proceeds to the high-level processes such as the language model. The bottom-up
approach is illustrated in fig. 2.14.

The top-down processor is illustrated in fig. 2.15. The language model generates hypothetic
meaningful sentences based on the syntactical, lexical, pragmatic and semantic knowledge. This
is similar to the way a person predicts the meaning of a sentence based on the cognitive frame-
work. The hypothetic sentences are matched against the speech signal word by word. When all
units (words) match the sentence (utterance) is verified.

2.5 Recognition Approaches 21

Signal processing

Labelling

Segmentation
�

Sound merging

Feature extraction

Word verification

Sentence verification
�

Voiced/Unvoiced/Silence

Sound classification rules
�

Phonotactical rules

Lexical rules

Language model

K
no

w
le

dg
e

S
ou

rc
es

Figure 2.14: Bottom-up knowledge based recognition. The processes are matching the speech signal se-
quentially starting with the low-level units [after ?, p. 55].

Feature
analysis�

Unit
matching
System
�

Lexical
hypotheses

Syntactic
hypotheses

Semantic
�

hypotheses

Uttering
verifying/
matching

Unit
inventory

Dictionary Grammar
Task
model

Speech
�

Recognized
utterance

Figure 2.15: Top-down knowledge based recognition. The processor generates hypotheses based on the
knowledge sources (inventory, grammar, etc) [after ?, p. 55].

22 Theory

Characteristics of the Approach

Advantages of knowledge based speech recognition:

• Automatic verification and correction of syntactic and semantic information in the recog-
nized sentences.

• It is easy to locate a knowledge source and add new information or correct the old.

Disadvantages of knowledge based speech recognition:

• It needs huge data banks and frameworks. Advanced models have to be developed.

• The input must be sentences that make syntactical and semantic sense.

2.5.3 Artificial Neural Networks Approach

The neural networks can be used as an extension to a recognizer or it can be used solely as a
recognizer.

The neural networks consist of neurons and weighting connectors. See fig. 2.16.

A neuron acts as a function that often is differentiable, continuous and nonlinear such as the
sigmoid functions. The sigmoid function is as follows:

f(x) = tanh(βx), β > 0 (2.6)

One neuron and its input connectors is called a simple computation element.

� �������	��
����� �����������

å

Figure 2.16: A computation element with only one neuron [after ?, p. 57].

Different types of neural networks are distinguished from each other by the network topology
(how the neurons are interconnected). The most common network topology is the multi-layer
perceptron network. All inputs are connected to each neuron in the first hidden layer. Each
neuron in the first layer is connected to the next layer and so forth. A simple two-layer perceptron
can recognize 10 steady state vowels using mere two acoustic formants. It has one output neuron
per vowel as shown in fig. 2.17.

In order to include the dynamics that exist in speech signals the simple computational elements
are expanded to include a number (N) of feature frames over time. This topology is called
time-delayed neural network (TDNN).

Fig. 2.18 shows a TDNN designed to recognize three consonants.

There are more advanced network topologies such as the Hopfield network in which the outputs
are included as inputs. This way it is recurrent and tends to stabilize at fixed points making
it especially good at recognizing fixed sets of patterns such as printed number or letters. The
neural network can be supported by the knowledge based AI to correct syntactical and lexical
errors. The neural network can also be used as support for another pattern recognizer.

2.5 Recognition Approaches 23

Figure 2.17: A multi-layer perceptron network designed to classify 10 vowels. Each output node represent
a vowel. To the right the decision regions are plotted [?, p. 59].

Figure 2.18: Time-delayed neural network. The first hidden layer joins 3 feature sets from the input. The
second layer generate a feature set based on 5 sets from the first. Nine of those classify the
consonants. Thus, the decision is based on 15 input frames (150 ms delay) [?, p. 55].

24 Theory

Learning

When the network is trained it is the weighting of the connectors and the offset within the
neuron that are adjusted. This is done with back propagation. A labeled training set is used
and the weights are randomized from the start. The output is calculated for a given input.
The deviation from the desired output is calculated and has to be minimized by adjusting the
weights and offsets. The gradients are derived for each computational element and the weights
are adjusted accordingly. The exact procedure can be found in [?].

Characteristics of the Approach

Advantages of neural networks:

• The neural network is suitable for parallel computation because of their simple construction
of computation elements.

• The performance of the system is not programmed or constrained; it can be adapted and
improved real-time.

• The information is spread to every element of the network. If a defect in one element
occurs the rest take over.

• It will learn the general information in a stochastic signal - if there is enough training
material it will recognize the general pattern in a signal that would be almost impossible
to identify and program manually.

Disadvantages of neural networks:

• In order to generalize it needs a lot of training material. The more hidden layers a multi-
layer perceptron network has, the more training it needs.

2.5.4 Acoustic-Phonetic Approach

The Acoustic-Phonetic approach to speech recognition is based on the assumption that phonetic
symbols can be recognized by using relations between phonemes and a set of acoustic properties
of a speech signal.

���������	�

	���� ����� �
���������	�

�����!

"$#�%�&('�)+*
,�-�.�/�0�1�2	354

6$7�8�9(:�;+<
=�>�?�@�A�B�C	DFE

GIHKJ	LNM	O!P�Q�RTS U	V
W	X�YZ [\�]	^ _ ` a�b

ced f gih	jlk�m	n�o
plqsr t

u	vxwNy	z!{�|}e~ ���	�
���	� �������
���!�	�	� �K���
�e�����(���
��������� � �¡
¢e£x¤ ¥K¦�§T¨ ©	ª

«�¬�	®�¯	°N±³² ´�µ�¶(· ¸�¹
ºI»K¼	½N¾	¿!À�Á Â�Ã¡ÄTÅ Æ�Ç
È�É(Ê	Ë�Ì�Í�Î Ï Ð Ñ�Ò(Ó Ô³Õ Ö	×�Ø	Ù Ú Û�Ü
Ý�ÞKß	à á�â ã�ä�å(æ(ç�èKé
ê�ë	ì(í	î ï�ðòñ�ó(ô(õ�ö�÷�ø	ù ú�û

üIý	þ!ÿ������
���
	
��������

������������� �����

���� �!�"�#

Figure 2.19: Block diagram of the acoustic-phonetic recognition process [?, p. 45].

2.5 Recognition Approaches 25

The recognition process is outlined in figure 2.19 and consists of the following 4 parts:

• Preprocessing

• Feature detection

• Segmentation and labeling

• Lexical analysis

Preprocessing

The preprocessing is done using a technique such as LPC or Bank-of-Filters. For more informa-
tion see section 2.4.

Feature Detection

The purpose of the feature detection part is to translate the spectral measurements from the
preprocessing to a set of features that describe the acoustic properties of the different phonemes.
Among these features are:

• Nasality (presence/absence of nasal resonance)

• Frication (random excitation in the speech)

• Formant locations

• Voiced/unvoiced

• Ratio of high- and low-frequency energy

The features are then used for the segmentation and labeling.

Segmentation and Labeling

The purpose of the segmentation and labeling part is to separate the speech signal into stable
segments; that is regions in which the features are constant or change very little. Each of these
segments represents a phoneme.

Furthermore each segment is labeled according to which phonetic unit best matches the acoustic
features of the segment. To improve recognition accuracy often the N best matches are saved
for the lexical analysis.

After segmentation and labeling a block of speech may look like figure 2.20, where the best
matches are at the top of the lattice.

LOW

AA

RAD

SIL

EH

AX

SIL

B

M AW

AA SIL

T

Figure 2.20: Phoneme lattice for the string“All about” [?, p. 43].

The labeling is usually done using binary trees.

It is the segmentation part that is the heart of the process and the most difficult part of the
algorithm.

26 Theory

Lexical Analysis

The last part of the acoustic-phonetic recognition process is the conversion from the sequence
of phonetic units to the spoken word(s). This process is usually done using a lexical search.
Since we don’t need to recognize which words are being said we don’t need an advanced lexical
analysis, instead the phoneme lattice from the segmentation and labeling part is converted into
a viseme lattice (see appendix F for more information on how this can be done).

Characteristics of the Approach

In the following the disadvantages that characterize the Acoustics-Phonetic approach will be
outlined.

• The approach requires extensive knowledge of the acoustic properties of phonetic units.
This knowledge is language dependent.

• The choice of measurements does not have a solid theoretical base and are hence often
selected based on intuition and ad hoc considerations.

• No well defined automatic procedure for optimizing or training the recognition process
exist.

2.6 Summary

In this chapter an overview of the theory behind the system to be developed was provided.
The fundamentals of how speech is produced and how it is interpreted by the human ear were
presented. Next the concept of visemes was introduced. With this basic knowledge necessary
for understanding the system to be developed the relevant analysis models and recognition ap-
proaches were finally presented. The characteristics of the analysis models for preprocessing and
recognition approaches are repeated in summarized form in table 2.2 and table 2.3 respectively.

Finally the reader should note that state-of-art solution for the recognition task analyzed in this
report includes Hidden Markov modeling, which has been omitted here, because it has been
considered as being beyond the scope of this project.

2.6 Summary 27

Bank-of-filters Linear Predictive Coding

1. Large bit-rate reduction, because
the signal is sampled and convoluted
with a bandpass filter.

2. By adjusting the spacing of the
bandpass-filters the model can be
made to describe the distribution of
the information in the speech signal

3. Computationally demanding when
realized in software. This is true for
both the IIR and FIR implementa-
tion.

4. The model will extract features in a
straight forward manner. However
this is done without much thought
to the physiological properties of the
source.

1. Models the speech signal very pre-
cisely, this is especially true for the
quasi steady state voiced regions of
the speech. In these conditions the
all-pole model of the LPC provides
a good approximation to the vocal
tract spectral envelope.

2. Parsimonious representation of the
vocal tract characteristics.

3. Mathematically precise method,
which is simple and straightforward
to implement in either software or
hardware.

4. Computation demands is consider-
ably less than that required for
an all-digital implementation of the
bank-of-filters model.

5. Experience have shown that the per-
formance of LPC used in speech
recognizers is comparable or better
than that of recognizers based on
filter-bank.

Table 2.2: Characteristics of the preprocessing methods

28 Theory

Pattern recognition Artificial Intelligence

1. Computation time for both training
and classification are linearly pro-
portional with the number of pat-
terns used.

2. Insensitive to choice of vocabulary
words, task, syntax and task seman-
tics.

3. Applicable to a wide range of speech
units.

4. Easy incorporation of syntactic and
semantic constraints to improve the
recognition accuracy.

5. Recognition is speaker dependent.

1. Needs huge data banks and frame-
works. Advanced models have to be
developed.

2. The input must be sentences that
make sense if the knowledge based
AI is to be used

3. Suitable for parallel computation.

4. Adaptive learning.

5. Information is spread to every ele-
ment of the network making it a tol-
erant approach.

6. Able to recognize a general pattern
in a signal that would be almost
impossible to identify and program
manually.

Acoustic-phonetic Artificial Neural Networks

1. Requires extensive knowledge of
the acoustic properties of phonetic
units. This knowledge is language
dependent.

2. The choice of measurements does
not have a solid theoretical base.
Therefore these are often based on
intuition and/or ad hoc considera-
tions.

3. No well defined automatic procedure
for optimizing or training the recog-
nition process exist.

1. Suitable for parallel computation.

2. Not programmed or constrained; it
can be adapted and improved real-
time.

3. The information is spread to every
element of the network. If a defect
in one element occurs the rest take
over.

4. If there is enough training material
it will recognize the general pattern
in a signal that would be almost
impossible to identify and program
manually.

5. Needs a lot of training material. The
more hidden layers a multi-layer per-
ceptron network has, the more train-
ing it needs.

Table 2.3: Characteristics of the recognition approaches

CHAPTER 3

Requirement Specification

3.1 Preface

A part of a system for automatic mouth animation from a speech signal is being developed. The
subsystem is named “Automatic Lip Synchronization of Animated Characters”.

The project starting point is a project proposal made by Jakob Buck from Interactive Television
Entertainment Aps (ITE). Even though the subsystem will be a component of the main system,
it is being developed as an independent program, hereby ensuring a high level of reusability.

3.1.1 References

The project proposal [?]

3.1.2 Guidance for Reading

“Automatic Lip Synchronization of Animated Characters” is in the following abbreviated as
ALSAC.

As this specification is based on [?], terms from there will appear in the following.

The subsystem being develop by the project group will be referred to as the system and the
system ITE is developing will be referred to as the main system.

In the specification the person who’s speech is recorded in the sound file is referred to as the
speaker. The animated character is referred to as the character.

3.2 General Description

3.2.1 System Description

ALSAC has two main functions, training and recognition.

The training in ALSAC is for teaching the system which sounds corresponds to which visemes,
so the system later can produce a stream of visemes from a speech signal. The training is done
by comparing a speech stream with the corresponding ideal visemes for the speech stream. The

29

30 Requirement Specification

Recognition
Reference

model

Ideal viseme

labels

Speech signal

Figure 3.1: Training. The model is trained using speech signals and the corresponding ideal viseme labels

Recognition

Reference
model

Viseme label
stream

Speech
streamData

collection
Animation

The subsystem

Analogue
speech

Animation
file

Graphics

Speech stream

Figure 3.2: Recognition. The dashed lines represent the interfaces between the subsystem and the main
system

training process creates a model of the mapping between speech and visemes. The training
process is shown in figure 3.1.

The recognition is done by ALSAC which is a subsystem of the main system. In the main system
a speech signal is sampled (data collection). The sampled speech is then streamed to ALSAC
and the animation part of the system. ALSAC uses the model made during the training stage
to generate a visemes stream which is streamed to the animation part of the system. Here the
speech stream, the viseme stream and the animation graphics are combined to an animation file.
The recognition process is shown in figure 3.2.

3.2.2 The Main Functionality of the System

ALSAC is to produce a stream of visemes from a sampled speech signal. The stream also contains
corresponding time-stamps for the beginning of each viseme. The format of the output is to be
defined in 3.3.1.

Since the recognition is speaker dependent, the system must include the ability to be configured
and trained to different speakers using different languages. Consequently it is necessary to be
able to load and save the templates belonging to a specific speaker. Furthermore it should be
possible to update a profile if more training data becomes available.

3.3 Specific Requirements 31

3.2.3 The Limits of the System

In the following the limits of ALSAC will be outlined

• ALSAC is not to recreate the meaning of the speech.

• Phonemes is not to be recognized.

• The system is to run off-line (not real-time).

• The recognition is character and language dependent.

• ALSAC is not to perform noise reduction of the speech signal.

3.2.4 The Future of the System

The system has to be designed so that it can be expanded to include different kinds of recognition
techniques. Likewise the user should be able to alter the complexity of the recognition process.
Furthermore the system could be expanded to post-process the stream of visemes to limit the
changes in the position of the mouth between two adjacent visemes (because too big changes in
mouth position appears unnatural).

3.2.5 User Profile

The users of ALSAC will be the animators at ITE, who are to be considered as professional
users.

The user interface is described in section 3.4.1.

3.2.6 Requirements to the Development Phase

The following analysis and design is to be done according to the object oriented method [?].
The implementation will be done i C++, using ANSI C++ where possible.

3.2.7 The Extend of the Delivery

ITE will be given a copy of the source-code and compiled program on a CD-ROM. Furthermore
ITE will recieve a copy of the report as documentation. The rights to the system is as outlined
in the NDA.

3.3 Specific Requirements

3.3.1 Definitions

• The specifications of the viseme file format will be specified by ITE and the project group
during the design of the system.

• The sampled speech signal is defined as being 16 bit uncompressed mono wave files. The
speech signal must be studio recording without any effect added to it. The sample-rate of
the speech signal should be the identical during both training and recognition as this will
produce the best result, but it is not a requirement.

32 Requirement Specification

3.3.2 Functional Requirements

• Training: The system should be able to be trained for different speakers using different
languages (e.g. different profiles). The training function should have a graphical user
interface.

• Recognition: The system should be configurable to work with different profiles.

3.4 Requirements for the External Interfaces

3.4.1 User Interface

The user interface will be implemented as a graphical interface only providing functionality
necessary to demonstrate training and recognition. The recognition and training process should
be able to run with minimum user interaction. The interface will be in English.

3.4.2 Software Interface

ALSAC will be running under Microsoft Windows 9x. The interface between ALSAC and the
main system is yet to be determined, but will generally be as outlined in figure 3.2.

3.5 Performance Requirements

ALSAC should determine the same viseme as the handmade viseme files in at least 80% of the
test-cases. Furthermore is should be at least as fast as the current method, which is defined
as computing 1 MB of 22 kHz 8 bit mono samples (approx. 45 seconds of speech) per hour as
described in section 1.2.1.

3.6 Quality Factors

The quality factors are given a priority according to the scale in [?]. 1 is unimportant and 5 is
extremely important.

Reliability (4)
It is very important that the system will work without errors. This is because the compu-
tation time could be long and the program should run with minimum user interaction.

Maintenability (2)
It is less important that the system has a high level of maintenability, because debugging
requires a high level of theoretical knowledge and therefore must be done by the project
group or a person with equal level of knowledge about the theory.

Expandability (3)
It is important that the system can be easily expanded, because of the terms outlined in
section 3.2.4.

Userfriendliness (3)
It is important that the system will be user friendly. The term user friendly is here more
in the meaning ’fast and efficiently to use’ instead of ’easy to use’.

Reusability (4)
It is very important that the system has a high level of reusability because the system

3.6 Quality Factors 33

should both be able to run as a stand-alone program and as a component of a greater
system.

Integrity (1)
It is not important that the system maintain a high integrity, because it does not contain
any secret data.

Efficiency (3)
It is important that the system is efficient, as outlined in section 3.5.

CHAPTER 4

Choice of Method

Unfortunately it is not possible in this project to make lip synchronization completely speaker
and language independent. Furthermore to lower the burden on ITE it is preferable to choose
a method that will not require a huge amount of preliminary work. Particularly labeling the
speech signal would result in extra work for ITE in the training phase of the system. Considering
this, the requirements from chapter 3 and the theories listed in chapter 2 under consideration
the following choices regarding the system to be developed have been taken.

4.1 Speech Data

The EUROM1 database will be used for training and testing (see [?] for more information).
This is done because it is possible to get a substantial amount of data that is labeled at the
phonemic level. The fact that the data is labeled with phonemes makes it necessary to convert
the phonemes to visemes. However this is a small price to pay considering the work required to
manually label a clean speech signal with visemes. Furthermore the process of converting from
phonemes to visemes can be automated as described in appendix F.

4.2 Viseme Set

ITE provided a simple viseme set that is found to be insufficient (cf. appendix F). The reason
for this is mainly that the phonemes cannot be mapped to visemes in a ratio of 1 to 1. In the
chosen viseme set the consonants will have 2 visemes. The decision of which viseme to use is
based on the roundness of the vowel within the same syllable. Appendix F contains a thorough
description of the selected viseme set and how the mapping from phonemes to visemes is done.

4.3 Preprocessing

As described in chapter 2 there are two commonly used methods for preprocessing a speech
signal:

• Bank-Of-Filter

• Linear Predictive Coding

35

36 Choice of Method

Considering that both the LPC approach and the Bank-Of-Filter approach fulfills the main
objectives of the preprocessing, namely to find a way to accurately characterize a given speech
signal without loosing any valuable information, both approaches should be considered. However
in this project it has been chosen to implement the LPC approach since it gives some advantages
over the Bank-Of-Filter approach, namely it is mathematically precise and computational less
demanding. Furthermore the results obtained using the LPC approach have been proven to be
at least equal to or greater than those achieved by the Bank-of-Filters approach (see section
2.4.2).

4.3.1 LPC Parameters

The actual algorithm used to implement the LPC approach is presented in appendix B and the
parameters presented in the following are primarily based upon the considerations presented
within this appendix.

As presented in section 2.4.2 there are three parameters which have to be determined in order
to use the LPC approach: the frame length N , the frame slide M and the order of the LPC-
analysis. In appendix B the optimal frame length and frame slide are determined to be 300
samples and 100 samples respectively. However in order to use these values in the program some
problems will have to be solved first. Converting the values directly will give 15 ms and 5 ms
respectively, which isn’t sufficient to accurately estimate the filter. Considering this and the fact
that the findings in appendix B assumes a relatively lower sample-rate than that of EUROM1 it
has been chosen to use a frame length of 20 ms and a slide of 10 ms. These proposed values have
previously been used successfully in similar projects using LPC on relatively high sample-rate
signals 1.

Regarding the order of the LPC-analysis there is a problem similar to that of the frame length
and slide. In appendix B it is stated that the range of the analysis order should be between 8 and
16 with 8 being the value of choice. However these values assume a relatively small sample-rate
of 6, 67kHz to 10kHz. According to [?] the order of the LPC-analysis should be decided using
following equation:

p = 2 + fs/1000Hz (4.1)

Considering that the sample rate fs of the chosen speech data from EUROM1 is 20kHz the
appropriate order p should be 22. Due to the fact that equation 4.1 provides a combination
between the analysis-order and the signal sample-rate whereas [?] does not it has been chosen
to perform the LPC-analysis with an analysis-order of 22.

4.4 Pattern Recognition

Regarding the method used to do the actual recognition there were four methods mentioned in
chapter 2. The methods were as follows:

• Pattern-Recognition approach

• Artificial Intelligence approach

• Artificial Neural Networks approach

• Acoustic-Phonetic approach

The Acoustic-Phonetic approach is not in consideration in this system since it requires knowledge
on phoneme-level and this system deals only with visemes. Since there is a problem getting
enough data both to perform a decent training and still have enough data to do a good test, it

1Rule of thumb proposed by the supervisers.

4.4 Pattern Recognition 37

is necessary to pick the one of the three remaining methods that requires the least amount of
data. This leads to the choice of the Pattern Recognition approach because it needs less data to
the training than both the Artificial Intelligence and the Artificial Network Network approach.

4.4.1 Pattern-Recognition

Within the pattern-recognizer DTW is chosen because of its ability to handle the problem of
speech not always having a constant velocity when spoken.

The distance measure in the pattern recognizer is chosen be an Euclidean distance because of
its low computational load, and the fact that it is much easier to use than some of the other
distance measures (which also are considered out of scope for this project).

As for the connected word recognition problem mentioned in section C.3 it has been chosen to use
the one-pass (one state) algorithm. This decision is based on the algorithms low computational
load and low storage requirements compared to other algorithms that solve a similar task [?,
Table 1]. It shoukd noted that a grammar will not be implemented as suggested in section 2.5.1.

4.4.2 Training

The Training method that will be incorporated is chosen to be the clustering method (Refer to
Appendix E for a description). It was selected as the most reliable approach primarily because
of its high recognition accuracy [?, p. 267]. The specific clustering algorithm that will be
implemented is chosen to be a Modified K-Means (MKM) algorithm in favor of the Unsupervised
Clustering Without Averaging (UWA). The reason for this decision is that it guarantees a 100%
coverage of the training set [?, p. 273].

CHAPTER 5

Test Specification

In order to determine whether the requirements in the requirement specification has been fulfilled
a set of tests have been developed. The training and recognition will be made using the speech
streams and altered phoneme files from the EUROM1 database. The phoneme files are converted
to viseme files using a conversion program made by the group. It is based on the simple algorithm
described in appendix F and is called “lab2vis”.

The available data will be divided into a training set and a test set. The ratio between the two
data set will be varied as variable amounts of training data will be used in order to determine
the optimal amount. The parameters used will likewise be varied in order to test whether the
parameters given in section 4.3.1 are the optimal.

National Institute of Standards and Technology [?] has developed a benchmarking program for
speech recognition systems. It is mostly used to compare systems, but it can also give single
systems a quality score. The advantage of using this test system is that it implements time
aligning and considers deletions, substitutions, insertions, and separations. Another advantage
is that the score is a recognized evaluation which makes it comparable to other systems that
uses the same benchmark. Another speech recognition tool called “The HTK Toolbox” [?]
contains an evaluation tool called “HResult”, which is compatible with NIST. ”HResult” is used
for comparing output label files with reference files. This tool will be used in the test, because
it is accessible. When referring to “score” in the following it refers to the HResult score, which is
an accuracy score, i.e. higher scores are better. This is opposed to the NIST score, which is an
error score, i.e. lower scores are better. However the two scores are compatible as NISTscore =
100−HResultscore.

The tests are outlined in table 5.1 to table 5.3.

Furthermore a check list is made. This is made in order to check that the statements about
the system in the requirement specification have been fulfilled by the program. The following
checklist shows each demand:

• The program is able to run under Windows 9x

• The program is able to load and save templates

• The program is able to update a profile if more training data becomes available

• The program output format is consistent with the format specified in 3.3.1

In the test, chapter 9, it will be marked whether each of the statements has been fulfilled. In

39

40 Test Specification

Basic system test

Purpose
To show that the basic system is working, so that any
further testing of ALSAC is reasonable.
NOTE: The purpose is not to test the recognition per-
formance of ALSAC.

Test method
The test is performed using ALSAC on a speech stream
which were used during the training. The resulting
viseme file is compared with the viseme file generated
by lab2vis which was used during training.

Test passed criteria
ALSAC is working if the test scores above 90%

Table 5.1: Test of the basics in ALSAC

Recognition test

Purpose
To test how ALSAC’s recognition performs on a speech
stream.

Test method
The test is performed using ALSAC on a speech stream
which was not used during the training. The resulting
viseme file is compared with the matching viseme file
generated by lab2vis.

Test passed criteria
As stated in the requirement specification ALSAC
passes the test if it scores above 80%.

Table 5.2: Test of the recognition done by ALSAC

41

Visual test

Purpose
To test the visual aspect of ALSAC. It should be noted
that this is the most important test.

Test method
The test is performed by an impartial group. The
group will evaluate the following set of viseme streams
while listening to the matching audio stream:

• A viseme stream generated by ALSAC

• A viseme stream generated by lab2vis

• A random generated viseme stream

These are to be graded by the group on a scale from
1 to 5 where 1 is poor performance and 5 is good per-
formance.

Test passed criteria
ALSAC has passed the test if its average grade is at
least 80% of the average grade of the viseme stream
generated by lab2vis.

Table 5.3: Visual test of the recognition done by ALSAC

the following the analysis of the system to be developed is documented.

CHAPTER 6

Analysis

6.1 Introduction

In the following the program to be developed will be analysed.

The system has two user functions: Training and Recognition. Figure 6.1 shows a rich picture
of the system. The input to the system is the speech data to be classified. When the system is
in training mode, the viseme labels corresponding to the speech data is also given as input to
the system, while this is not the case for recognition. First a preprocessing proces takes place,
extracting the information which is used for the classification. Then the actual classification
takes place and depending on the mode (training or recognizing) a stream of output visemes
will be generated or the reference database updated.

Preprocessor

Actor

Input
Manager

Classifier
�

Preprocessor
Input

Manager

Classifier
�

Training

Output
�

Manager

Graphical
�

User
Interface

Recognition

Ideal viseme labels

Speech
samples Features

Speech
samples Features Visems

Reference
Model

Reference
Model

Speech
�

Speech
�

Figure 6.1: Rich picture of the system

The analysis is split into two parts; Analysis of the problem domain and analysis of the Applica-
tion domain. In the first part the problem domain is defined and the object system corresponding
to it is identified. A model is then developed by describing the classes of the object system, their

43

44 Analysis

structure and behavior. In the second part the application domain is defined and the system’s
properties of use examined. That is, the use patterns and corresponding actors are identified.
Finally also the interfaces of the system will be outlined in this part.

6.2 Analysis of the Problem Domain

The problem domain is by definition the part of the surroundings, which is to be administrated,
monitored or controlled by a computer system. Thus we define the problem domain of this
project as follows:

The proces of synchronizing the mouth positions of animated characters with corresponding
speech files in a multimedia production.

6.2.1 Structure

By observing figure 6.1 the class names listed below make candidates:

• Input Speech Stream

• Input Viseme Stream

• Output Viseme Stream

• Feature Stream

• Preprocessor

• Classifier

• Reference Database

• Profile

Futhermore the classes can almost immediately be logically grouped as shown in figure 6.2, which
shows the class hiearchy. The cluster Input Manager is the grouping of the classes Input Speech
Stream and Input Viseme Stream, while the Output Manager only consists of Output Viseme
Stream. The Pattern Processor is a grouping of the classes Preprocessor, Feature Stream and
Classifier. Finally The Profile and Reference Database classes groups into a cluster called User
Manager. This structure logically divides the system into four major steps each handling a part
of the proces described in the definition of the problem domain, namely:

• Input Manager: Collect the data to be processed

• Pattern Processor: Proces the data to determine the visemes and time labels the speech
should be synchronized with

• User Manager: Provide a way for the user to save the result and the configuration

• Output Manager: Output the result of the proces in the desired format

6.2 Analysis of the Problem Domain 45

Input

Input
Viseme

Stream

Input

Speech

Stream

Pattern Processor

Feature Stream

Classifier

Preprocessor

1
1

1

0..1

1

1

User manager

Profile

Reference

Database

11

Output

Output
Viseme

Stream

1 0..1

Figure 6.2: Class structure

6.2.2 Classes and Behavior

In the following each class and the corresponding object’s behavior will be described in order to
complete the model of the problem domain.

Input Speech Stream

This class embeds the speech data and provides funtionality for retrieving it on the fly during
execution. The state diagram for it can be seen in figure 6.3.

Delivering

Input speech
stream requested

Input speech
stream delivered

Figure 6.3: State diagram of Input Speech Stream

Input Viseme Stream

This class is intended to hold the viseme sequence and time labels which belongs to a given
training speech file. The state diagram for it can be seen in figure 6.4.

Delivering

Input viseme
stream requested

Input viseme
stream delivered

Figure 6.4: State diagram of Input Viseme Stream

46 Analysis

Output Viseme Stream

The Output Viseme Stream class provides a mechanism for accumulating the determined visemes
to a resulting viseme sequence. The state diagram for it can be seen in figure 6.5.

��������� 	�

�������������� �����!
"$#&% '�(�)+*-,�.0/ 1$243�5

687�9�:�;�<�=�> ?�@�A!B
C�D�E-F�G�HJI$KMLON P�Q

Figure 6.5: State diagram of Output Viseme Stream

Preprocessor

The Preprocessor processes the sound data into features for the recognition. The state diagram
for it can be seen in figure 6.6.

Started
�

Feature vector
saved

Speech block
processed

Preprocessing
started

Preprocessing
finished

Saving
�

feature vector

Figure 6.6: State diagram of Preprocessor

Feature Stream

The Feature Stream class should constitute an internal interface between the Preprocessor and
the Classifier in the Pattern Processor. Thus it should contain functions allowing the Prepro-
cessor to deliver extracted features and allowing the Classifier to retrieve features for pattern
classification. The state diagram for it can be seen in figure 6.7.

Feature stream
created�

Speech block
processed

Feature stream
delivered

Feature vector
saved

Figure 6.7: State diagram of Feature Stream

6.2 Analysis of the Problem Domain 47

Classifier

The Classifier selects which viseme best matches the current set of features. The state diagram
for it can be seen in figure 6.8.

Training

Recognizing

Updating
database

�

Recognition
started

Reference
database
updated Training

finished

Viseme
not found

Training
started

Recognition
finished

Updating
output manager�

Output manager
updated

Viseme
recognized

Viseme found

Figure 6.8: State diagram of Classifier

Profile

The Profile class is intended to keep track of the different users of the system. The state diagram
for it can be seen in figure 6.9.

Profile
created�

Open
� Profile

changed�

Profile
opened Configuration

entered

Profile
saved

Configuration
updated

Profile
created

Reference database
updated

Figure 6.9: State diagram of Profile

48 Analysis

Reference Database

The Reference Database class is the storage for the patterns identified by the Classifier. It is
used as a dictionary in the pattern comparison proces. The state diagram for it can be seen in
figure 6.10.

Empty
Profile created

Idle

Reference
database updated

Profile opened

Reference database updated

Reference database saved

Figure 6.10: State diagram of Reference Database

From the state diagrams of the objects the events shown in table 6.1 can be generated. The
following abbreviations for the object names have been used in the table:

• Input Viseme Stream(IVS)

• Input Speech Stream(ISS)

• Output Viseme Stream(OVS)

• Feature Stream(FES)

• Preprocessor(PRP)

• Classifier(CLS)

• Profile(PRF)

• Reference Database(RDB)

6.3 Application Domain

The application domain is outlined in the requirement specification.

6.3.1 Use

The system is to help the animators at ITE in their work. More precise it shall provide a tool
for the animaters to (semi)automate the proces of synchronizing the speech with the appropiate
visemes. However some postprocessing, such as interpolation of visemes and other visual effects,
must be expected in other to create a satisfying final result. Futhermore it should be noted that
recording of speech signals is not part of the system. It is expected and required that the speech
has been recorded and digitized prior to the use in this system.

6.3 Application Domain 49

IVS ISS OVS PRP FES CLS PRF RDB
IVS requested +
IVS delivered +
ISS requested +
ISS delivered +
OVS recieved +
OVS stored +
Preprocessing started +
Preprocessing finished +
Speech block processed + +
Feature vector saved + +
FES delivered +
Training started +
Recognition started +
Viseme not found +
Viseme Found +
RDB updated + +
Training finished + +
Viseme recognized +
Output Manager updated + +
Recognition finished +
Profile created +
Configuration entered +
Profile opened +
Configuration updated +
Profile saved +

Table 6.1: Events and affected objects

50 Analysis

Actors

The actors of the system are animators working at ITE. More than one actor is expected, but
the actors (animators) are all assumed to share a common set of use patterns, that is they are
considered as actors of the same type.

Use Patterns

Two main use patterns can immediately (based on the requirement specification) be identified,
namely

1. Training

2. Recognition

The use patterns are illustrated in figure 6.11 and figure 6.12 respectively.

Training selected

Training
selected

Existing profile
selected

New profile
created�

New profile
selected

Profile selected Configured
�

Change
configuration

Change
configuration

Training finishedProfile updated

Training started

Profile updatedTraining exited

Figure 6.11: Use pattern for Training

Recognition
selected�

Recognition
selected

Profile selected

Profile selected Configured
�

Change
configuration

Recognition
finished

Recognition
started

Recognition exited

Figure 6.12: Use pattern for Recognition

6.3 Application Domain 51

6.3.2 Graphical User Interface

In the following section the classes, their structure and behavior will be identified in order to
determine the objects the Graphical User Interface should be made of.

Structure, Classes and Behavior

The classes needed for the Graphical User Interface is determined partly by the requirement
specification and the use patterns. The class diagram can be seen in figure 6.13.

DialogBox

Canvas
�

UpdateDialogBox

MenuItem

1 1

1

TitleBar

FileDialogBox

ConfigDialogBox
�

ProfileDialogBox

Window

1 1

1

Canvas
�

MenuBarTitleBar

1

MenuArea

11

1..*0..*

1

1..*

1

0..*

RadioButtonCheckBox
�

Button

0..*0..*

Figure 6.13: Class diagram for the Graphical User Interface

In order for an operating system to handle the actions performed on a window, the window
needs to be subscribed to the operating system. Hereby the existence of the window will be
known for it and thus enabling event handling. The involved objects must be associated with
an event handler in order for the events to be catched and handled in a way different from
the predefined action for a given event. Hence several of the classes shown in figure 6.13 are
already defined and handled by MicrosoftWindows. The focus will therefore be on identifying
the events which will not be handled by performing a predefined standard action. Thus events
such as “start training” will be in focus, in opposition to standard events like “resize window”,
because these are automatically handled. A description of these objects and their attributes are
not of interest, since this already can be found in the Win32 API. The events of interest will be
found by a relatively detailed investigation of the interactions between the user and the system
illustrated in the use patterns - Training and Recognize.

The Training Scenario

Given the program has been started and initialized, the user can now begin a training session.
The expected user actions and corresponding events are shown in figure 6.14, which partly is
identified from the use pattern shown in figure 6.11. The training session can be exitted from
the main window.

The Recognition Scenario

In a similar manner the events involved in a recognition session is created partly from it’s
corresponding use pattern shown in figure 6.12. The event flowdiagram is shown in figure 6.15.

52 Analysis

Main window
displayed

�

Session menu clicked
�

Show menu items in session menu

Menu item Training clicked

Show profile dialog box

Which
profile?� New Profile button clicked

Existing Profile button clicked

Profile chosen?
No

Yes

Show file dialog box
(profile name)

Destroy file dialog box

Save Profile
�

 button clicked

User input
correct?�

No

Yes

Save profile
Destroy file dialog box

Destroy profile dialog box

OK
�

 button clicked

Start
�

 button clicked

Training finished

Exit Session button clicked

Destroy config dialog box
Show training dialog box

Call training algorithm

Destroy training fialog box

Profile saved?
No

Update button clicked

Show update dialog box

Destroy update dialog box
Update profile

Yes

OK
�

 button clicked

Show config dialog box (Speech file, Viseme file, Training
method, Distance measure)

Figure 6.14: Event flowdiagram for Training

6.3 Application Domain 53

The recognition session can be exitted from the main window.

Main window displayed

Session menu clicked
�

Menu item Recognize clicked�

Show menuitems

Profile exists?

Profile chosen?

No

Yes

Destroy profile dialog box
Show config dialog box (profile settings)

Config
�

changed?�

No

Yes
�

Start
�

 button clicked

Recognition finished

Destroy config dialog box
Show recognize dialog box

Call recognition algorithm

Save
�

 button clicked

Show save config dialog box

OK
�

 button clicked

Show profile dialog box

OK
�

 button clicked

Yes

No

Destroy save config dialog box
Save config

Destroy recognize dialog box
Show main window

Show menuitems
with recognition blured�

Figure 6.15: Event flowdiagram for Recognition

Functions

The user should be able to train and recognize as the two main actions. Examining the events
illustrated in figure 6.14 and figure 6.15 it is however quite obvious, that these main actions is
performed in a number of small steps. This is from the developers point of view equal to invoking
a number of functions to constitute the complete action. The functions which immediately can
be seen from the figures are:

54 Analysis

• createWindow

• destroyWindow

• createDialogBox

• destroyDialogBox

• loadConfig

• saveConfig

• loadProfile

• saveProfile

• initialize

• validateUserInput

CHAPTER 7

Design

This chapter describes the design of the system to be developed based on the analysis described
in chapter 6.

7.1 Architecture

7.1.1 Criteria

The system will be designed according to the criteria outlined in the requirement specification
(chapter 3) and the choice of method (chapter 4). Furthermore it is to be designed with a
high level of modularity. This is done in order to allow for modifications of for example the
preprocessing or recognition strategy with only minor modifications to the rest of the system.
In order to allow for easy change of strategy the design will make widespread use of the Strategy
Design pattern (see appendix D for more detail).

7.1.2 Component Architecture

The system can be directly divided into two main components from the analysis: The Model
component and the User Interface component. The Model component handles everything related
to the actual recognition, and is almost directly described as the problem domain in the analysis.
The component is further divided into the clusters given in the analysis document as shown in
figure 6.2. The User Interface component handles all interaction with the user. This component
is not directly part of the system wanted by ITE thus it will be implemented only with minimum
functionality making it possible to demonstrate the system. Because the User Interface developed
is of no interest to ITE, the interface between the GUI and the Model component must be loosely
coupled, thereby providing an simple system interface for ITE.

The architecture can in general be viewed as a client/server architecture in which the Model
component serves the User Interface component with functions for training and recognition.

7.1.3 Process Architecture

Because of the inherent serial structure of the algorithm the entire recognition process will be
designed as one thread. The User Interface will likewise be running as an independent thread.

55

56 Design

This is done to keep the system simple and still gain an responsive User Interface. Furthermore
this architecture provides a low coupling between the two components.

7.2 Model Component

7.2.1 Structure

After the analysis it has become clear that the Model component needs two more classes, a
SystemManager class and a Segmentator class. The purpose of the SystemManager class is to
provide a simple interface to the Model component.

The purpose of the Segmentator class is to segment the speech signal into segments containing
speech data. The purpose of this is threefold:

• To limit the amount of speech data held in memory at a time

• To minimize the latency of the system. This is important if the system is ever to run
realtime

• To remove areas of silence which do not need to be recognized

The Segmentator class is located between the Preprocessor and the Classifier. This is done
because the feature vectors contain information about the energy of the signal which is useful
in determining areas of silence.

In addition to the Segmentator class two more classes are needed to handle the stream of visemes
and feature vectors.

Figure 7.1 shows the class diagram of the Model component.

SystemManager

InputSpeechStream InputVisemeStream Preprocessor Segmentator Classifier OutputVisemeStream

Model component

Figure 7.1: Class diagram of the Model component

7.2.2 Model Component Architecture

The Model component uses a stratified architecture. The SystemManager is located at the top
level. This is the interface to the Model component. The SystemManager handles initialization
and deinitialization of the needed objects and then transfers control to the Segmentator which
is the controlling object for the signal processing proces.

In the following section the behavior of the Segmentator for the two cases will be described.

7.2 Model Component 57

Training

Segmentator

InputVisemeStreamPreprocessor

InputSpeechStream

Classifier

OutputVisemeStream

Figure 7.2: Active objects in the Model component during training.

Figure 7.2 shows the interaction between the active objects during training. The algorithm of
the Segmentator consists of 5 steps.

1. A Viseme object is read from the InputVisemeStream object

2. The corresponding Feature objects are read from the Preprocessor

3. The Classifier’s updateTrain method is called with the Viseme object and the sequence of
Feature objects

4. Step 1 to 3 is repeated for all of the viseme stream

5. Finally the Classifier is notified by calling its train method

Recognize

Segmentator

Preprocessor

InputSpeechStream

Classifier

OutputVisemeStream

Figure 7.3: Active objects in the Model component during recognition.

Figure 7.3 shows the interaction between the active objects during recognition. During recogni-
tion the Segmentator acts like a gate which only opens for input if the energy level of the stream
of Feature objects rises above a given threshold. This is done to shorten the length of the test
sequence and thereby lower the memory consumption of the system. The system can be in two
states: Opened or closed.

58 Design

1. The system starts in the closed state

2. A Feature object is fetched from the Preprocessor

3. If the energy level of the Feature is above the threshold the Feature object is saved for
later, otherwise it is discarded

4. If the energy levels have been above the threshold for a specified time the segmentator
changes to the open state, else step 2 and 3 are repeated

5. A Feature object is fetched from the Preprocessor and saved for later

6. If the energy level of the Feature object is below the threshold a flag is set, else it is cleared

7. If the flag has been set for a specified time the last n Feature objects are discarded, the
Segmentator calls the recognize method of the Classifier with the rest of the sequence and
the state is changed to the closed state, else step 5 and 6 are repeated

8. Step 2 to 7 are repeated for all features

7.2.3 Configuration

A way of keeping configuration data like thresholds for the Segmentator or the refernce model for
the Classifier is needed. Since the system is to support different strategies an extendable config-
uration system must be designed. For this purpose a new class called a Container is needed. A
Container contains configuration data for an object of the Model component. Different special-
izations of the Container class is needed for each class containing the specific configuration data
and methods for accessing it. In addition to the methods for accessing the specific configuration
data two methods for setting and getting the configuration data inside the Container object are
shared by all specializations.

• getData()

• getLength()

• setData(data)

These three functions are used for loading and saving configuration data to a disk file in a
standardized manner.

Furthermore each container contains a getType() method so its type may be determined at
runtime.

Furthermore an extra class is needed to contain all the Container objects to a given system. For
this purpose a Profile class has been made. This class contains the following public methods for
accessing the internal containers.

• getInputSpeechStream()

• getInputVisemeStream()

• getPreprocessor()

• getSegmentator()

• getClassifier()

• getOutputVisemeStream()

Information about the Profile file format can be found in appendix A.

7.2 Model Component 59

7.2.4 Classifier

The Classifier consists of two parts; training and recognition. As the training part uses the
MKM clustering algorithm and the DTW algorithm, these algorithms have been put in seperate
classes, MKMTraining and DTW. This makes it possible to change the DTW algorithm to one
with different path constraints. Similarly, the recognition part uses the One-Pass algorithm
which has been put in a seperate class, OnePass. This also allows for changing to different path
constraints. The class hierarchy of the classifier can be seen in figure 7.4.

Classifier
�

DTW OnePass
�

MKMTraining

Figure 7.4: Classifier class hiearchy

7.2.5 Classes

InputSpeechStream
Objective: To read speech data from a given source and deliver a stream of speech when
requested.
Methods: getSpeech(nr samples), getSampleRate()

InputVisemeStream
Objective: To read viseme data from a given source and deliver a Viseme object when
requested.
Methods: getViseme()

Viseme

Objective: To contain a viseme and the corresponding time stamp.

Methods: getViseme(), getTime()

Preprocessor

Objective: To convert a block of speech data to a feature object.

Methods: getFeature()

Feature

Objective: To contain a feature vector and offer operations on it.

Methods: data(), length(), energy(), distance(Feature), time()

Segmentator
Objective: To divide the stream of Feature objects from the Preprocessor into segments
suitable for training or recognition.
Methods: recognize(), train()

60 Design

Classifier
Objective: To classify which viseme a stream of Feature objects correspond to. Further
more it should be able to be trained by giving it a stream of Feature objects and the
corresponding viseme. The training is divided into to parts, updateTrain and train to
support various kinds of classifier strategies.
Methods: recognize(Feature[]), updateTrain(Feature[],Viseme), train()

OutputVisemeStream

Objective: To save viseme data to a destination.

Methods: setViseme(Viseme)

SystemManager
Objective: To handle construction and destruction of the other objects of the Model
component. Further more it provides a simple interface to the component.
Methods: recognize(Profile), train(Profile)

Profile
Objective: To contain configuration data. This includes the reference model of the
classifier.
Methods: load(), save(), getInputSpeechStream(), setInputSpeechStream(), get-
InputVisemeStream(), setInputVisemeStream(), getPreprocessor(), getClassifier(),
getOutputVisemeStream(), setOutputVisemeStream()

7.2.6 User Interface Component

The User Interface consists of a single main window. From this window the user can interact
with the system as shown in the navigation diagram on figure 7.5. The window is build up from
a menubar and an empty canvas (client area). The menubar contains the menus and menu items
shown in figure 7.6 from where the user can choose the desired action to be performed. When
a menu item is clicked an appropriate dialogbox is created to handle the user’s dialog with the
system and to collect user input.

Classes

A User Interface consists of the classes Window, Dialog, Menubar, Menu, MenuItem, Event,
EventHandler, EventListener, Button etc., but since the User Interface component for this sys-
tem will be build up from existing standard classes these will not be described here. Please
refer to the C++ programming language and literature on windows programming for more
information on the subject.

7.2 Model Component 61

���������
	 � �

������������������
�

� ��!�"
#%$�&�')(
*,+ - .

/10�2�3 4

576�8�9;:=<

>@?�A�B�C1D�E F�G

HJILKNMPO QSR�T U VW XLY[Z]_^ `Lacb d e

f@gPh_i_j[kPl mon

prq�s t�u�v�w,x y z
{|7}�~ ���
�
�,� � �
�

������� �;�%������1���
������� ��� �1�;�%�
�1�

 �¡

¢¤£ ¥[¦ §

¨
© ªL«¬[® ¯[°L±_²P³

´�µ[¶ ·P¸S¹

º�»

¼�½¾�¿

À�Á Â�Ã

Ä ÅLÆ[Ç

È¤ÉËÊ Ì

Í�Î

Ï]Ð
Ñ�Ò;Ó,Ô Õ Ö

×�Ø

Ù ÚLÛ[Ü

Ý�Þ�ß�à=á,â ã ä

å�æ[ç èPéSê

ë�ì

íïî�ð ñ;òôó õ
ö
÷
ø

Figure 7.5: Navigation diagram for the program

Figure 7.6: The menus of the system

62 Design

Elements

The elements of the User Interface are:

• Main window

• New Profile Dialog Box

• Open Dialog Box

• Preferences Dialog Box

• Train Dialog Box

• Train Input Dialog Box

• Train Update Dialog Box

• Recognize Dialog Box

• Recognize Input Dialog Box

A description of each element and its purpose is presented in the following:

The Main Window

This is the initial displayed window that will be displayed when the user executes the program.
All user performed actions is initialized from the menubar of this window.

New Profile Dialog Box

From this dialog box a new profile can be created. The user must specify a profile name and a
character name in order to create a new profile.

Figure 7.7: The New Profile Dialog Box

The Open Dialog Box

From this dialog box the user may load an existing profile into the system.

7.2 Model Component 63

The Preferences Dialog Box

This dialog box let the user configure the settings for the loaded profile. These must be set prior
to training and can’t be changed for that specific profile afterwards.

Figure 7.8: The Preferences Dialog Box

The Train Dialog Box

The Train Dialog Box appears when the user starts a training session. From here the user can
start the actual training, when an input speech file and the input viseme file has been chosen.

Figure 7.9: The Train Dialog Box

64 Design

The Train Input Dialog Box

This dialog box lets the user specify the name of the speech input file and the viseme input file
to be used for training.

The Train Update Dialog Box

This dialog box lets the user update the profile after training is completed.

The Recognition Dialog Box

The Recognition Dialog Box appears when the user starts a recognition session. From here the
user can start the actual recognition, when an input file and output has been chosen.

Figure 7.10: The Recognition Dialog Box

The Recognition Input Dialog Box

This dialog box lets the user specify the name of the input file and output file to be used for
recognition.

CHAPTER 8

Implementation

This chapter contains the documentation of the implementation of the developed system. First
some changes since the design will be discussed and the reason for these changes will be given.
The last part of this chapter will be used for elaborating on some of the more crucial parts of
the implementation.

8.1 Changes Since the Design

In the design it was specified that the Model component and the GUI component would run
in different threads. During the implementation this was not done due to lack of time and
resources.

Some things specified in the previous chapter have not been implemented. This was not done
because of lack of time and resources towards the end of the project.

The following functions were not implemented:

• The possibility to update an already trained reference database has not been implemented.

• The use of cepstral coefficients in the preprocessor has not been implemented.

• Only one type of path weights and path constraints is implemented in the classifier.

• Error handling is not implemented.

Neither of the above mentioned items will lead to a drastic change of the program and is therefore
considered of minor importance. The consequences of these choices is that it is not possible to
add to an existing training nor is it possible to continue an ended training and the program will
not be responsive while training or recognizing. Furthermore the system can only be tweaked in
a limited manner due to missing preprocessor methods, constraint types and path constraints
support.

8.1.1 Data format

It has been chosen to represent the speech data to be transferred between the InputSpeechStream
and the Preprocessor as floats. This is done to avoid the problems normally associated with
fixed point data types, namely:

65

66 Implementation

• Different multiplier depending on the number of significant bits of the input

• Overflow and underflow

To keep the amplitude of the signal in control thoughout the system the input signal is scaled
to lie within the range -1 to 1. This is preferable because it makes it easier to define the energy
thresholds for the Segmentator.

8.2 Core Elements of the System

The core parts of the system is specified as being the Preprocessor, the Classifier and the Profile
clusters. In the following sections issues specific for the implementation of these clusters will be
discussed.

8.3 Profile

As the system has been developed using both Intel and Sparc machines portability between big
and little endian machines has been a major concern. Since the file format is in little endian
format (see appendix A for further information about the file format) it is nessecary to convert
the container data before and after accessing the disk for the system to work on a big endian
machine. This is done by the containers since only they know the structure of the data. The
conversion is implemented using compiler preprocessor macros.

8.4 Preprocessor

Implementing the preprocessor was a two step process. Before actually designing and imple-
menting the preprocessor the algorithm used where prototyped and tested thoroughly using
MATLAB. As described in appendix B the algorithm used for feature extraction by Linear
Predictive Coding (LPC) can be split into 7 parts all of which are relatively straight forward
in nature. Since the LPC parameter conversion was not implemented for reasons explained in
section 8.1 only the first five parts of the algorithm where prototyped using MATLAB.

In general there are certain properties of MATLAB which must be taken under consideration
before using this program to prototype a given algorithm. The primary cause of problems when
using MATLAB is the fact that it is matrix-based. This fact create an array of problems ranging
from how to store variables and constants to how to use matrix-based indexes in equations.
However after having solved these minor problems MATLAB has proved to be a helpful tool in
evaluating algorithms.

Prototype

The following parts of the Linear Predictive Coding algorithm was prototyped in MATLAB:

• Preemphasis

• Frame blocking

• Windowing

• Autocorrelation analysis

• LPC analysis - Levinson-Durbin’s algorithm

In general all the algorithms where implemented according to appendix B. In the following
problems encountered during the implementation will be discussed.

8.4 Preprocessor 67

The first problem occurred when trying to implement the frame blocking algorithm. The problem
concerns what to do when it is not possible to block the signal into frames of equal length. The
problem occurs when there is not enough data to fill the last blocks. The solution to this
problem is to zero-pad the signal until there is enough data. Normally zero-padding will not
change the properties of the approximated filter as this problem in general only occur after the
last sentence when the signal is approximately zero. In the C++ implementation this is handled
by the InputVisemeStream class.

The last two problems occurred in the implementation for the Levinson-Durbin algorithm. The
first problem, which is not actually a problem but rather an observation, concerns computational
load caused by the algorithm. It seems that the computation of the α variable is not optimal
when done recursively as the computational complexity will be O(p2), where p is the analysis-
order. In the light of this discovery and the fact that computation in MATLAB is relatively slow
is was chosen not implement the computation of α as a recursion. Instead the computed values
of α are stored in a matrix structure, which reduced the computational complexity to O(p).

The final problem concerns the actual algorithm for Levinson-Durbin. It seems that the al-
gorithm presented in appendix B and the algorithm used by MATLAB to compute the LPC
coefficients does not produce an equal result. The difference is however not as severe as one
might expect as the only difference is a change of sign. However since MATLAB offers insuffi-
cient documentation to determine the nature of the algorithm used it has been chosen not to
question the algorithm presented by ?, p. 115 and reproduced in appendix B.

68 Implementation

8.5 Classifier

In the following it will be described how the classifier is implemented. The classifier consist
of mainly two parts: The training part and the recognition part. The recognition part is a
straightforward implementation of the one-pass algorithm described in appendix C and will not
be covered here.

8.5.1 Training

The training is performed by collecting the templates corresponding to the different visemes, and
afterwards reducing the number of templates by running the templates belonging to a viseme
through the Modified K-Means clustering algorithm.

In appendix E.3.2 the MKM was described as :

1. Initialize: j, i, k = 1, ω1
1,1 = Ω and compute centriod Y (ω) of Ω

2. Optimal minimum distance classification: Each pattern Xl, for l = 1, 2, ..., L in Ω is labeled
by index i according to the minimum distance principle:

Xl ∈ ωk
j,i if δ(Xl, Y (ωk

j,i)) = minl′δ(Xl, Y (ωk
j,i′)) (8.1)

Sum the total intracluster distance for each cluster ωk
j,i′ , defined as:

∆j
i =

∑
δ(Xl, Y ω

k
j,i) (8.2)

The summation is overall Xl ∈ ωk
j,i.

3. Revision of clusters and centroids: Form ωk+1
j,i by grouping all Xl’s with label i retrieved

from step 2. Compute new centroids for ωk+1
j,i , i = 1, 2, ..., j

4. Convergence test: Goto 5 if one of these is fulfilled:

• ωk+1
j,i = ωk

j,i for all i = 1, 2, ..., j

• k = kmax: maximum iteration count reached

• Change in average (or total accumulated) distance is below predefined threshold ∆th

else k++ and repeat step 2 - 4.

5. Record the j-cluster solution: Given convergence has been reached, the resultant clusters
and centroids, ωk

j,i and Y (ωk
j,i), i = 1, 2, ..., j are the j-cluster solution for the training set

Ω.

Under the implementation of the MKM clustering algorithm the algorithm was changed slightly
from the one described in the appendix E.3.2. The order of some calculations have been changed.
The condition deciding when to break out of the k-loop has been simplified; it does not check
whether convergense is reached before kmax is reached, and it does not use the change in average
distance threshold. This was done because these factors are only interresting with much larger
amount of training data than the amount currently operated on.

The new algorithm is displayed in the flowchart shown in figure 8.1.

During the implementation it was not clear how to represent the clusters and cluster centers
best. It was decided to operate with indexes pointing to templates instead of operating with
the templates themselves, because this is much faster, and because the only thing the algorithm
needs to work is the distance between two templates. This distance is found by a look-up in a
precalculated distance matrix with DTW-scores for each combination of templates.

8.5 Classifier 69

Compute matrix of
�

distances, D
�

Compute cluster
�

center Y(� ω�) of entire
�

training set
�

Ω

k > kmax ?
No Yes

Done

k += 1

No

Classify training set
�

vectors

Compute cluster
�

centers�

Compute
�

average�

intracluster
distance
�

j += 1
�

j > j
�

max ?

Yes

k = 1

j = 1,
�

ω� 1
1,1 = Ω

Split cluster
�

with largest
distance
�

Find cluster
with largest

distance
�

Figure 8.1: Flow chart for the revised Modified K-Means clustering algorithm.

70 Implementation

Cluster centers are thus represented as indexes pointing to templates.

Two solutions were discussed for a representation of the clusters:

Solution 1: For each cluster there is a vector with indexes pointing to the templates belonging
to it.

Solution 2: A vector with l elements exists, where l is the number of templates. Each element
is an index, that tells which cluster the template belongs to.

Solution 1 has been chosen since it saves unnecessary searches when for instance the center of
the cluster is to be calculated.

There have been a number of special cases in the algorithm that were hard to spot. These are
listed below:

Problem: findGreatestCluster finds a cluster with only 1 template. This occurs because split-
GreatestCluster makes two centers pointing to the same template.

Solution: Do not include clusters with less than 2 templates when finding greatest cluster.

Problem: No greatest cluster was found. This occurs because all clusters have max one tem-
plate.

Solution: Do not subdivide further. This can be avoided by setting the number of wanted
clusters to less than or equal to the number of templates - before the actual algorithm.

Problem: splitGreatestCluster chooses the same template for the new cluster centers. This
happends because all the templates in the cluster are identical (that is, the DTW-distance
is the same).

Solution: Do not assign the same template to two centers.

Problem: computeClusters creates empty clusters. This occurs because some of the input tem-
plates are identical. If these two templates are chosen as two new centers, the computation
of the clusters would assign all of the surrounding templates to only one of the centers.

Solution: An extra test must be performed to test if the template being associated with a
center is the center itself. If yes, associate the template with the center and not with
any of the other centers. This guarantees that there will always be at least one template
associated with each cluster.

CHAPTER 9

Test

The test of ALSAC is divided into two parts. The first is the component test, which is used
to test whether the individual components are implemented correctly. This is done in order to
ensure that all the components functions as specified, which is necessary if the second test is to
be successful. The second test is the system test. This test is used to determine the performance
of the system. Furthermore it is checked whether the requirements stated in the requirement
specification have been fulfilled.

9.1 Component Test

The following parts are the most crucial in ALSAC:

• Preprocessor

• Segmentator

• Classifier

• GUI

The following contains a description of how each of these parts of ALSAC have been tested using
stubs and drivers and/or prototypes.

9.1.1 Preprocessor

The Preprocessor cluster was primarily tested using the MATLAB prototype described in chapter
8. As previously mentioned the purpose of the prototype was to evaluate the algorithm used
and by doing so successfully we gained a powerful tool to use in the implementation and test.

During the driver tests of the Preprocessor cluster the MATLAB prototype proved an invalu-
able help as it could provide actual values needed to test every step of the preprocessor. The
MATLAB prototype was modified to display details for crucial variables before, during and after
the five steps of the algorithm. The Preprocessor cluster was likewise modified to display debug
information and the prototype values could then be used to detect potential bugs.

71

72 Test

9.1.2 Segmentator

In order to test the segmentator a test application was created. Test stubs were also imposed
to generate and print test data. As test data does not need to represent actual sound features
pseudo random numbers were used instead.

In order to create a reproducible test scenario the random number generator is seeded with a
fixed number each time (the default seed).

The following classes were simulated:

• Preprocessor::getFeature();

– It will return random 1-dimensional features

• InputVisemeStream::getViseme();

– A random viseme will be generated with a random viseme number and a random
time added to the previous time stamp.

• Classifier::recognize(features);

– This stub will print the feature stream on screen.

• Classifier::update train(features);

– The feature stream and the viseme plus its time-range will be printed on screen.

• Classifier::train();

– This stub will do nothing in the test, but it is called by the Segmentator and therefore
included here.

Results

The pseudo random numbers used to test the recognize function is presented in table 9.1. It
should be noted that through the following 3 tables the pseudo random numbers are formatted
as follows:

[Energy] [Time]

starting 24464 180 4827 360 18716 540
18467 20 5705 200 5436 380 19718 560
6334 40 28145 220 32391 400 19895 580
26500 60 23281 240 14604 420 5447 600
19169 80 16827 260 3902 440 21726 620
15724 100 9961 280 153 460 14771 640
11478 120 491 300 292 480 11538 660
29358 140 2995 320 12382 500 end
26962 160 11942 340 17421 520

Table 9.1: Pseudo random numbers used to test the recognize function of the segmentator.

Testing the recognize function with an energy threshold of 10000 and time threshold of 2 gives
the result presented in table 9.2. Noted that ’finished’ marks the separation of segments.

9.1 Component Test 73

starting 24464 180 14604 420 11538 660
18467 20 5705 200 12382 500 end
6334 40 28145 220 17421 520
26500 60 23281 240 18716 540
19169 80 16827 260 19718 560
15724 100 finished 19895 580
11478 120 11942 340 5447 600
29358 140 finished 21726 620
26962 160 32391 400 14771 640

Table 9.2: Result of testing the recognize function of the segmentator.

In table 9.2 it should be noted that:

• A single feature lower than the threshold do not separate segments.

• The features before and after a separation are all above the threshold - Apparently the
segments are successfully chopped without silence.

Consequently the test passed, because both item one and two are fulfilled.

Testing the train function gives the result presented in table 9.3. Noted that a different set
of random numbers are used in this test as various other values also needs to be randomized
in order to thoroughly test the train function. The values needed in addition to those already
determined are: segment start time, segment end time, and viseme number. The generated
values will appear in connection with the result of the test in table 9.3.

starting 23281 240 11942 340 segment start: 486
segment start: 132 16827 260 4827 360 segment end: 576
segment end: 269 segment finished 5436 380 viseme: 4

viseme: 0 segment start: 269 32391 400 12382 500
29358 140 segment end: 486 14604 420 17421 520
26962 160 viseme: 24 3902 440 18716 540
24464 180 9961 280 153 460 19718 560
5705 200 491 300 292 480 segment finished
28145 220 2995 320 segment finished

Table 9.3: Result of testing the train function for the segmentator.

In the test of the train function it should be noted that each feature in a segment is within the
range of the corresponding viseme, therefore it most be concluded that the test is passed.

9.1.3 Classifer

Training

The training mainly consists of an implementation of the MKM clustering algorithm. Since the
MKM clustering algorithm uses the DTW algorithm, the implementation of the DTW also has
to be tested.

DTW

At an early stage in the project period the DTW algorithm has been implemented and tested
in MATLAB. This created great possibilities to plot the local distance matrix of the algorithm

74 Test

to gain understanding of what is going on inside the algorithm.

The C++ DTW implementation has been tested with a test driver. The test driver is a console
program, that takes two strings as parameters. The strings are converted to one-dimensional
feature-vectors by their ASCII-value. The converted strings are then compared by the DTW
algorithm which returns a dissimilarity score.

The implementation has been tested with various strings. When the two strings are equal the
returned score is zero. Streching one of the strings by repeating some of the letters also results
in a zero score (as it should when the path constraints are Type I). The less similar the strings
are, the worse the score.

By the above observations and by logging the computations of the test it has been concluded
(as a black box test) that the DTW implementation is working.

MKM Clustering

The MKM clustering implementation has been tested with a test driver. The test driver calls
the clustering with a number of templates with one two-dimensional vector in each template.
The two-dimensional vectors which allows for plotting the vectors on the screen for easy testing
of different test cases. The screen-shot in figure 9.1 shows a test case with 300 templates and
the 6 templates (centers) from the clustering representing them.

Figure 9.1: Screen shot of the test driver for the implementation of the MKM-clustering algorithm.

The training has been tested with various extremes. Under this test a number of bugs was found
and fixed in the implementation of the algorithm, as described in 8.5.1.

With several extreme cases tested the implementation has been considered correct (as a black
box test).

Recognizer

Since the recognizer is based on the One-Pass algorithm, this algorithm has been implemented
in a separate class and tested with a test driver.

The driver is a stand-alone console program that recognizes text strings. The reference database
(the templates) of the driver are the strings “zero”, “one”, “two”, “three”, “four”, “five”, “six”,

9.2 System Test 75

“seven”, “eight”, and “nine” which are converted into one-dimensional feature vectors by their
ASCII-value.

The test driver takes a test string as input and tries to recognize the above strings in it. When
using the test driver, the following was observed:

When typing perfect test strings, the test driver program performs as expected. When typing
words from the reference database and stretching them (that is, repeating a letter one or more
times), the program also recognizes the words correctly. When typing words from the reference
database and changing some of the letters with letters with a close ASCII-value, the program
mostly recognizes the words correctly.

With these observations together with a log-file with the computations of the algorithm it has
been concluded as a black-box test that the implementation of the One-Pass algorithm is working.

9.1.4 GUI

The User Interface component was tested by imitating the various use patterns and comparing
the hereby produced responses to the expected ones. Thus almost every possible combination of
actions from the user has been observed. The test also included verifying the correctness of the
states for all elements that the GUI is build up from. This means that the states of bottoms,
menus, edit boxes etc. were observed in several different situations. The User Interface was found
to behave as specified. The test was performed iteratively during the development process and
completed by a final test for correct behavior after ended implementation. Some of the software
objects used in the GUI did, though behaving correct, not perform as user friendly as intended.
However due to lack of time and because the GUI component is not of great importance to the
system wanted by ITE, these issues has not been addressed.

9.2 System Test

This section presents the three tests specified in the Test Specification, chapter 5. Furthermore
it is checked whether the requirements specified in the requirement specification have been met.
The tests will be described in detail and the results will be presented. Technical merit will
be given by the HTK tool HResults. In order to use this tool, the viseme label files must be
converted into a format HResults can read. For this purpose a utility called “vis2test” has been
developed by the project group. The utility converts a reference viseme file and a recognized
viseme file into files that can be used in HResults.

Throughout the system test the individual files from EUROM1 used in each test will mentioned
in connection with the specific test. Refer to the documentation for the EUROM1 database for
more detailed information concerning these files.

9.3 Checklist Test

The purpose of the Checklist Test is to check that the statements made about the system in the
requirement specification have been fulfilled by the program.

The following tests are performed:

Run Under Window9x
This demand is tested by running the training and recognize session in a Microsoft Win-
dows 95 or 98 environment. If the system does as specified the test is to be considered
passed.

76 Test

Load And Save Profiles
This demand is tested by starting the program, creating a new profile, saving it, shutting
the system down and then try to open the save profile in a new session. The test is passed
if the previously saved profile matches the newly loaded one.

Update Profile
This demand is tested by creating a profile, starting a training session with the data
specified in the profile and then try to train the profile with another data source. The test
is passed if the system updates the profile successfully.

Consistent Output Format
This demand is tested by training the system, recognizing a speech file and then comparing
the output file to the file format specified in appendix A. The test is passed if the output
file respect the guide lines specified.

Test Passed Failed
ALSAC can run under Windows 9x X
ALSAC can load and save profiles X
ALSAC can update a profile X
ALSAC give a consistent output file X

Table 9.4: Results of the checklist test

The results of the checklist test are displayed in table 9.4. From this it can be seen that the
system fulfills three out of four demands specified in the requirement specification. The reason
of ALSAC not being able to update a profile with new training data is explained in section 8.1
in the implementation chapter.

9.3.1 Base System Test

The purpose of the base system test is to show that the base system is working, so that any
further testing of ALSAC is reasonable. The purpose is not to test the recognition performance
of ALSAC.

The test is first and foremost done using one passage per speaker for both training and recogni-
tion. In addition to this test the effects of changing the number of passages used in training are
also tested.

For the two above mentioned tests the following files from EUROM1 are used:

One passage
Training and recognition - anq00075.pds.

Four passages
Training - anq00075.pds, anq10076.pds, anq20077.pds and anq30078.pds.
Recognition - anq00075.pds.

The output test files will be compared to the reference label files by the HTK HResult test
program. The output of HResult must be set to be compatible with NIST. By default it returns
an accuracy while NIST returns an error percentage.

The maximum accuracy of the tests must be above 90% to pass.

The results of the base system is displayed in table 9.5. From these results it can be concluded
at the system does not perform as well as expected. The reason for this can partly be explained
by the lag of optimal training data. The data used in the training process was generated by the

9.3 Checklist Test 77

Test LPC Order Frame length Overlap # Files # Clusters Correct Accuracy
1 18 15 ms 1/2 4 8 40% 27%
2 18 15 ms 1/2 1 4 48% 39%
3 18 15 ms 1/2 1 16 74% 64%

Table 9.5: Results of the base system test.

’lab2vis’ tool. This tool takes a phoneme-labeled file and translates it into a less than prefect
viseme file. It is expected that the base system test will provide a better result if the training
data were optimal.

9.3.2 Performance Test

The performance test is performed using ALSAC on a speech stream which was not used during
the training. The resulting viseme file is compared with the matching viseme file generated by
lab2vis. It is specified that a test table must be made using variable amount of training data
and variable parameters. Only one passage will be recognized.

The following files from the EUROM1 database are use in the performance test:

One passage
Training - anq00075.pds.
Recognition - anq90084.pds

Four passages
Training - anq00075.pds, anq10076.pds, anq20077.pds and anq30078.pds.
Recognition - anq90084.pds.

Nine passages
Training - anq00075.pds, anq10076.pds, anq20077.pds, anq30078.pds, anq40079.pds,

anq50080.pds, anq60081.pds, anq70082.pds, and anq80083.pds.
Recognition - anq90084.pds.

The output test file will be compared to the reference label files by the HTK HResult test
program. The maximum accuracy must be above 80% to pass.

There are five parameters to tweak the recognition performance; LPC order, frame length, frame
overlap, number of files to train on, and number of clusters for each viseme. To find the optimal
settings various combinations are tested using HResult.

In addition to tweaking the basic parameters the parameters of the segmentator are also tweaked
for better silence detection. This is done by comparing the energy output file and the viseme
file of various speakers not used in the test. The optimal parameters were from these tests
determined to be:

Opened:
Time threshold: 3 blocks
Minimum energy level: 6 · 10−8

Closed:
Time threshold: 3 blocks
Maximum energy level: 2 · 10−8

It should be noted that a bad combination of the parameters will cause many insertions (seen
as flickers) in the output viseme file.

78 Test

As many tests last for hours the number of tests are limited. Table 9.6 shows the tests divided
into three phases:

A. Test of which ratio of overlap is best. Values of 1/2 and 1/3 will be tested. The LPC order
is set at 14 and the frame length at 25 ms. These values were used because a higher order
would mean unreasonably long computation times. The best overlap will be used in the
remaining test phases.

B. Test of which combination of LPC order (14, 18, or 22) and frame length (15, 20, or 25
ms) performs best. The best combination will be used in the remaining test phase.

C. Test of which combination of number of files to be trained (1, 4, or 9) and number of
clusters (4, 8, or 16) are best. The best combination is considered the best result.

By using the approach defined above the number of tests can be limited to (the parentheses
mean the number of e.g. LPC orders to be tested):

tests = (LPC orders) · (frame lengths) + (files to train) · (clusters)
+(overlaps)− (repeated tests) (9.1)

tests = 3 · 3 + 3 · 3 + 2− 2
tests = 18

Otherwise the tests needed would have been:

tests = (LPC orders) · (frame lengths) · (files to train) · (clusters)
·(overlaps) (9.2)

tests = 3 · 3 · 3 · 3 · 2
tests = 162

Phase Test LPC Order Frame length Overlap # Files # Clusters Accuracy
A 1 14 25 ms 1/2 4 8 16%

2 14 25 ms 1/3 4 8 5%
B 3 14 15 ms 1/2 4 8 18%

4 14 20 ms 1/2 4 8 16%
5 18 15 ms 1/2 4 8 22%
6 18 20 ms 1/2 4 8 18%
7 18 25 ms 1/2 4 8 18%
8 22 15 ms 1/2 4 8 22%
9 22 20 ms 1/2 4 8 22%
10 22 25 ms 1/2 4 8 16%

C 11 18 15 ms 1/2 4 4 22%
12 18 15 ms 1/2 4 16 19%
13 18 15 ms 1/2 1 4 25%
14 18 15 ms 1/2 1 8 20%
15 18 15 ms 1/2 1 16 14%
16 18 15 ms 1/2 9 4 23%
17 18 15 ms 1/2 9 8 18%
18 18 15 ms 1/2 9 16 27%

Table 9.6: Performance test matrix.

9.3 Checklist Test 79

The result of the test is as displayed in table 9.6. From these results it can be seen that the
system does not perform nearly as well as expected. There are various reasons why this is so.
The results can primarily be explained by the criteria for success not being realistic.

When the criteria for recognition accuracy was determined in the requirement specification it
was expected that a viseme based recognizer could perform approximately as well a phoneme
based system. However phoneme based systems has the obvious advantage of knowing the exact
number of sounds to associate with each template (1 to 1), which is not the case for the viseme
based recognizer. Taking into account that the training mechanism implemented uses a fixed
number of clusters to represent each viseme, there is a certain likelihood that the system is either
over- or under-trained with respect to some of the visemes.

The inherited problems concerning over- and under-training constitute a problem when compar-
ing the system with other systems for speech recognition, but it will not necessarily influence
the visual aspects of the recognition. The following test will determine how the system performs
visually.

9.3.3 Visual Test

Even though the visemes are not correctly recognized the viseme stream might look acceptable
for a human being. Due to this a visual test will be made by an impartial group. This test has
higher importance than the prior tests, since it is more important that the output looks good
on the animated character than that the output is correctly recognized.

The group will evaluate the following set of viseme streams in random order while listening to
the matching audio stream:

• A viseme stream generated by ALSAC

• A viseme stream generated by lab2vis

• A random generated viseme stream

– When generating the random viseme stream the test program reads the silence bound-
aries in the lab2vis reference file. When the speech begins it fills a segment with
random visemes of random durations until silence begins again. Thus the number of
visemes will be random as well.

These are to be graded by the group on a scale from 1 to 5 where 1 is the worst performance
and 5 is the best performance. 10 passages are available per speaker for the test.

ALSAC will be trained using 9 passages per speaker which are concatenated. The reference
viseme files are concatenated using a tool developed by the project group called viseme combiner.
3 speakers will be used. Each training set will be stored in profiles corresponding to each speaker.
The last passage will be presented to the test group with each of the above mentioned three
viseme files.

The speaker sets used for the test are:

• anq0*.pds-anq8*.pds for training and anq9*.pds for recognition

• blq0*.pds-blq8*.pds for training and blq9*.pds for recognition

• ebo0*.pds-ebo8*.pds for training and ebo9*.pds for recognition

The parameters of the preprocessor and the classifier were: 16 clusters, 9 files, 16 LPC, 1/2
overlap, and 20 ms frame.

Each of the test members will be given a test sheet which can be seen in appendix G. The
correct order will be as shown in table 9.7.

80 Test

Speaker 1 Speaker 2 Speaker 3
A Random Recognized Reference
B Reference Reference Random
C Recognized Random Recognized

Table 9.7: Order of test viseme streams.

The members of the test group will evaluate one by one not being able to discuss the results.
They will be equipped with a test sheet, a pencil, and a set of headphones. When evaluating
a speaker, they will view all three viseme streams without giving grades. Afterward they will
view the streams again and give the grades.

The instructions are as follows:

There are 3 speakers in total. For each of these there are three recognized viseme streams.
You must decide which viseme stream creates the best lip synchronized animation. First,
you will see the three viseme streams without voting. Next you’ll see them again, where
you must give each a grade from 1 through 5, and 5 is the best.

The results will be processed as follows:

• The average grade for each of the viseme streams are calculated.

• The standard deviation for each of the viseme streams are calculated.

• Evaluation of how ALSAC has performed in comparison to the reference and the random.

The standard deviation is calculated to see whether the test group has a mutual understanding
on how good the different streams perform. It is clear that the smaller the standard deviation
is the more unanimous the test group is on how well the stream performed.

The standard deviation is calculated as:

σ =

√√√√√√
N∑

i=0

(µ− xi)2

N − 1
(9.3)

Where µ the average value and N is the number of elements, and xi is the current grade.

Test Results

Test Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Average
Random 2 4 3 2 2 3 2.66
Reference 3 5 4 4 5 2 3.83
ALSAC 4 2 2 3 3 3 2.83

Table 9.8: Recognition performance test for stream 1

It can be seen from the standard deviation test results (tables 9.9, 9.11, and 9.13) that it is
difficult for the test group to make an unanimous decision on how good the system performs
because the standard deviation is rather big.

Inspecting the results all together it can be seen that the reference visemes perform best in
all tests as expected. However looking at the tests individually two out of three tests shows a
slightly better performance for ALSAC compared to the random generated visemes (see tables

9.3 Checklist Test 81

Test Standard Deviation Correctness Accuracy
Random 0.8165 32 4
Reference 1.1691 100 100
ALSAC 0.7653 40 19

Table 9.9: Recognition performance test for stream 1

Test Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Average
ALSAC 1 3 2 1 3 3 2.16

Reference 3 5 5 3 4 2 3.66
Random 4 3 2 3 2 3 2.83

Table 9.10: Recognition performance test stream 2

Test Standard Deviation Correctness Accuracy
ALSAC 0.9832 32 22

Reference 1.2111 100 100
Random 0.7528 25 10

Table 9.11: Recognition performance test stream 2

Test Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Average
Reference 3 4 5 4 2 4 3.66
Random 2 3 3 2 1 2 2.16
ALSAC 1 3 2 3 3 3 2.50

Table 9.12: Recognition performance test 3

Test Standard Deviation Correctness Accuracy
Reference 1.0328 100 100
Random 0.8367 24 17
ALSAC 0.6056 28 19

Table 9.13: Recognition performance test 3

82 Test

9.8, 9.10, and 9.12). Some explanation is in place here, because the word “random” is associated
with implicit expectation to a poor performance. Thus the fact that the randomly generated
visemes outperforms ALSAC in one of the tests may seem disappointing.

The word“random”is however misleading in this context, because actually the“random”visemes
are generated with time indexes taken from the reference visemes. This means that the correct
start and endpoints for silence is “known” by the “random” visemes, while these are computed
and therefore unknown for ALSAC. Thus this “knowledge”gives the“random”generated visemes
a considerable advantage which should be taken into consideration when judging the system’s
immediate poor performance.

Furthermore it became obvious that the test persons evaluate the performance from quite differ-
ent criteria. This was discovered by interviewing the testers afterwards. However, one common
characteristic (drawback) seemed present among the testers, namely that of flickering. Flickering
occurs when inserting a viseme of short duration whose distance to the previous viseme is large
(e.g. shifting from closed to open mouth to closed again swiftly).

When the number of such insertions is quite seldom (which is the case for ALSAC - as can be seen
from the HResult scores) compared to the number of insertions made by the random generated
visemes, these insertions are clearer noticed by the test persons, because of their more seldom
occurrence. Thus it creates the paradox that the test persons interpret the visemes generated
by ALSAC as being wrong, when many of them actually are correct recognized.

Finally a bug in the implementation of the segmentation algorithm (end point detection) was
found. The bug causes the detection of starting and ending frames to be shifted in time by the
value of the time duration threshold parameter (3 frames of 10 ms in the test case). Unfortunately
this was first discovered after the tests.

It is important to note that the visual test was performed without tweaking the performance of
the system. This is due to lack of time as the performance tests lasted for hours.

Debugging the system revealed that the training process stored lots of templates being mere 3
frames long. They could cause the recognition to accept many short visemes because one actual
(large) viseme could be divided into a number of shorter visemes (of 3 frames). It is more likely
for the one pass algorithm to be able to match a series of short templates to the input than to
match long templates that are up to 10 times longer.

Another problem is the way the templates are created. As the templates originate from a
connected stream of feature vectors, the endpoints of the templates can easily contain some
information (partly) belonging to another viseme. This could also explain some of the flickering
between some templates as the decisions at template boundaries become rather random and
short templates are filled in because they fit best.

Another fact that could explain that the One-Pass algorithm prefers short templates is that
warping slopes greater than 1 are not preferred by the standard algorithm (as described by [?]).
A possible solution for this is slope weighting, which has not been used because of low time
resources at the end of the project.

CHAPTER 10

Conclusion

This chapter is the conclusion of this report and the developed system. First a short summary
of the report will be given and then it will be concluded if the objectives for the project has
been met and if the developed system meets the requirements.

First an overview of the common theories used in speech recognition was given. This includes
human speech production and perception. Then varies techniques both for preprocessing speech
and classifying visemes were documented. Next the requirement specification for the system
to be developed was introduced. After the requirement specification the decisions on which
approach to adapt for the implementation was chosen based on the theories discussed in chapter
2 and the requirement specification. From this point a test specification was constructed. With
this in place the analysis and design together with the complex parts of the implementation were
described in the analysis, design, and implementation chapters accordingly. Finally, the system
was tested against the requirements, which was documented in the test chapter.

10.1 Formal Requirements to the Project

The requirements from the Study Board for the 6th semesters project were as stated in chapter
1:

On this semester the focus is to gather, represent and process abstract knowledge. With
a starting point in a specific problem description the student should work with gathering
the necessary information and represent it on abstract form. This involves that the stu-
dent obtains knowledge on how the information is extracted from the information carrying
signals, how this information can be represented as symbols and how these symbols can be
processed. The interesting information would typically originate from physical signals but
can also be available in another forms.

It is concluded that the project group has met the requirements stated above, because a system
including these aspects of information processing and retrieval actually has been developed. The
physical signals (speech signals) are available in sampled form and the visemes used can be in-
terpreted as an abstract representation of speech signals. The abstract information is processed,
classified and afterwards presented to the user of the system. Thus all aspects described are
included in the developed system and consequently the formal requirements are fulfilled.

83

84 Conclusion

10.2 The Developed System

A system performing the desired task of processing a speech signal classifying the contained
sequence of visemes and corresponding time stamps has been implemented and tested. The
system has in general been found to implement the correct task, but lags the sufficient recognition
accuracy stated in the requirement specification. In this context it is important to note that
the relatively high accuracy demands were proposed by the project group and not by ITE. Thus
lagging this requirement do not imply that the developed system is not applicable for ITE in their
animation process. On the contrary the system is believed to contain the ability to accelerate the
synchronization process in a usable degree, compared to the present manual approach. However
when this is said, it must also be clearly stated that some of the more exclusive features lags
implementation. It is by reason of these yet unexplored possibilities believed that the system
persists potential for higher accuracy scores than achieved by the system in its present state.
Thus the next section provides a description of the suggestions made by the project group to
further improve the present system.

10.3 Future Improvements

As it clearly was stated in the previous section the achieved system holds place for numerous
updates that yet remains to be implemented. In order to supply ITE with the best possible idea
of issues that can increase the system’s recognition accuracy, a list of suggested improvements
are given here.

• Interpolation between visemes to improve the final visual impression

• Support for repeatedly training of profiles.

• Incorporation of various path constraints and slope weighting to improve distance calcu-
lations.

• Incorporation of a grammar to reduce the effect of flickering

• Incorporation of better distance measures, e.g. use of cepstral distance measure.

• Manual tuning and optimization of the system specific parameters are expected to improve
the overall performance of the system.

• Template stretching in order to compensate for errors introduced by short templates.

• Removal (avoidance) of too small templates. Perhaps incorporation of a template time
duration threshold.

Hopefully this will be helpful for the programmers at ITE to adapt the system to future require-
ments in the their continuous development.

APPENDIX A

File Format Documentation

This appendix contains information about the file formats used by ALSAC. Note that it is only
the formats designed for this project and not the standard formats such as the EUROM1 files.

Two formats will be described:

• The viseme format

• Profile format

A.1 Viseme Format

When defining a viseme format the following issues must be considered:

• File type

• Identifiers

• Time unit

• Viseme representation

A.1.1 File Type

There are two major file types when implementing the viseme format:

Type Advantage
1. Binary Smaller files, protected data
2. ASCII Easy to create test files and view test-results for debugging

Type 2 (ASCII) is chosen because the task at hand is testing and debugging.

A.1.2 Identifiers

It must be considered whether the viseme format require a header identifying the file type. As
type 2 is chosen this header should be readable like a comment. Three lines are reserved as
a header while the viseme stream is ended with a ’*’ so that it is possible to write comments
afterwards.

85

86 File Format Documentation

Another identifier that must be defined is the separator between time stamps and visemes. Each
set of a time stamp and a viseme is defined as: [time][space][viseme][newline]

A.1.3 Time Unit

The LPC frames are defined as being 15-30 milliseconds, which makes it not feasible to use a
resolution lower than milliseconds. The resolution could be test-frames instead of millisecond,
but then it would be less readable. Consequently, the time unit is chosen to be milliseconds.

A.1.4 Viseme Representation

The symbols used for visemes in appendix F table F.4 is chosen to represent the visemes in the
viseme format. This way it is easy to read the files because it is consistent with the viseme
documentation.

A viseme file could look like:

* Generated by ALSAC *

0 0
60 2a
200 13
520 1
600 10
840 4
960 0

* End of example file *

A.2 Profile Format

The profile file format must be able to store different kinds of data while also supporting future
extensions of the program and the file format. This flexibility can be achieved by using a
chunk-based file format which has the following form:

• A chunk usually consists of a header and some data

• The header usually consists of an ID of four chars and a length of the data stored in an
unsigned int

• The data can be anything, for example a number of other chunks

As the strategy design pattern has been used extensively different kinds of input speech streams,
input viseme streams, segmentators, preprocessors, classifiers, and output viseme streams have to
be stupported in the file format. Therefore after the standard chunk header there is a Container
type field (stored as an unsigned int) to tell which kind of the above is being used, and hence
which kind of containers should be instantiated.

The structure of the profile file format can be seen in figure A.1. The chunks inside the ALSC
chunk can lie in any order and eventual undefined chunks should be expected and ignored.

The contents of the chunks in the ALSC chunk are implementation specific to the different kinds
of containers. The structure of the CLAS chunk, however, is essential if any other software is

A.2 Profile Format 87

Is intended to hold a database
representing the information from the
training of the system, e.g. templates.

�

A L S
�

C
�

Length in bytes

I N S
�

S
�

I N V S
�

P R E P

S
�

E G
�

M

C
�

L A S
�

Length in bytes

O
�

U T P

Is intended for information about the
source of the input speech stream. This
could be a filename, IP-adress, etc.�

Is intended for information about the
source of the input viseme stream. This
could be a filename, IP-adress, etc.�

Is intended for configuration information
for the preprocessor, for example the
order of LPC coefficients.

Is intended for configuration information
for the segmentator, for example noise
gate thresholds.�

I N F O
�

Is intended for information about the
destination of the output viseme stream.

�

This could be a filename, IP-adress, etc.

Length in bytes Length in bytes

Length in bytes Length in bytes

Length in bytesLength in bytes

Is intended for general information.
This could be character name,
speaker name, etc.

Container type Container type

Container type Container type

Container type Container type

Container type

Figure A.1: The profile file format

88 File Format Documentation

to read the reference database of the current system. The structure of the CLAS chunk when
the Container type is CLASSIFIER TEMPLATEBASED (defined as en enum in the .h file for
the BaseContainer) is explained in figure A.2.

It should be noted that the file format is little endian.

C
�

L A S
�

Length in bytes

R E F Q
�

Length in ints

R E F W
Length in ints

R E F E

Viseme id

Container type = CLASSIFIER_TEMPLATEBASED, defined by an enum in the .h file

Length in ints

Feature data

Feature data

...

constraints_type�

distance_type
�

k_max

n_clusters

Viseme identification number

Type of path constraints, defined by an enum in the .h file

Type of distance measure, defined by an enum in the .h file

Max number of cluster iterations used in the clustering algo.

Max number of clusters wanted from the clustering algo.

REFQ chunk, holds data for a number of visemes

REFW chunk, holds a number of templates for the
viseme

REFE chunk, holds a number floats as data0.
.*

1.
.*

1.
.*

 Feature data, consisting of a number of float
cofficients�

Figure A.2: The classifier chunk

APPENDIX B

Feature Extraction using Linear Predictive Coding

The purpose of this appendix is to explain and expand the theory of the Linear Predictive Coding
(LPC) model for feature extraction presented in section 2.4.2. Furthermore an algorithm for
implementing a LPC front-end processor for speech recognition will be described. Note that this
document is primarily based on the theory presented in [?] unless otherwise stated.

B.1 The LPC Analysis

The strength of the LPC model is its ability to model a speech signal through the associated
vocal tract characteristics thereby producing a robust and parsimonious representation of the
given signal. It is done by approximating the all-pole filter that best fits the signal spectrum of
a given frame of speech samples that can be considered relatively stable. The actual extraction
of the coefficients ak of the digital filter is based on the idea that a given speech sample at time
n can be approximated by a linear combination of the p past speech samples.

s[n] ≈ s̃[n] =
p∑

k=1

aks[n− k] (B.1)

However, this interpretation leaves the possibility to make a prediction error, e[n], which at a
given time n is defined as

e[n] = s[n]− s̃[n] = s[n]−
p∑

k=1

aks[n− k] (B.2)

The solution for extraction of a set of optimal coefficients for the digital filter is to minimize the
prediction error of the entire speech frame consisting of m samples. This is represented by the
mean squared error signal E:

E =
∑
m

(s[m]−
p∑

k=1

aks[m− k])2 (B.3)

In order to find the optimal coefficients âk the error signal E will have to be differentiated with
respect to each ak and these equations will have to be solved for each of the results equal to
zero. Doing so gives the following result:

89

90 Feature Extraction using Linear Predictive Coding

∑
m

s[m− i]s[m] =
p∑

k=1

âk

∑
m

s[m− i]s[m− k] (B.4)

This equation can be solved using autocorrelation and the Levinson-Durbin algorithm in order
to get the actual LPC-coefficients. The way in which this is done is presented in the following
algorithm for an LPC front-end processor for speech recognition.

B.2 Algorithm for the LPC Front-End Processor

In section 2.4.2 the generalized algorithm for implementing the LPC front-end processor pre-
sented in figure B.1 was briefly reviewed.

Block into frames
LPC spectral

analysis
LPC parameter

conversion

N M

Figure B.1: LPC analysis model [?, p. 72]

This three-step algorithm can easily be expanded to a 7-step algorithm, which also encompasses
the pre- and post-processing necessary in a speech recognition scheme. This algorithm will be
the focus the following text and is illustrated in figure B.2.

(t)rm

m(t)a

Xt[n] Xt[n]~

Preemphasis

Ĉ (t)m
weighting
Parameter LPC

parameter
conversion

LPC
analysis

analysis
Autocorrelation

Windowing

Cm(t)

s[n] s[n]~

MN W[n]

w(m)

p

Frame
blocking

Figure B.2: Block diagram of the LPC processor for speech recognition [after ?, p. 113]

Pre-Emphasis

The purpose of this first step in the processor is to compensate for the uneven dispersion of signal
amplitude within the given frequency spectrum. This is done by dampening the low frequency
sounds and accentuating the high-frequency sounds thereby creating more flattened spectral
characteristics of the signal s[n]. The actual pre-emphasizing is done by a fixed or adaptive
first-order FIR filter. Since adaptive filtering is not relevant within the scheme of this project
only the fixed value implementation of the filter will be used. The difference equation of the
fixed first-order FIR filter is as follows:

s̃[n] = s[n]− ãs[n− 1] for 0.9 ≥ a ≥ 1.0 (B.5)

In equation B.5 s̃[n] represent the pre-emphasized speech signal and ã is the filter-coefficient
which is commonly set to 0.95.

B.2 Algorithm for the LPC Front-End Processor 91

Frame Blocking

As mentioned in the generalized algorithm described in section 2.4.2 the speech signal is blocked
into frames in which the spectral contents of the signal can be considered approximately stable.
Note that in this algorithm it is the pre-emphasized speech signal that is divided into frames.
The actual frame-blocking technique is the same as described in 2.4.2. As shown in B.3 the
pre-emphasized speech signal is blocked into a finite number of adjacent frames with a length of
N samples and overlaps by N −M samples. The overlap by N −M samples adjacent frames is
used to ensure full signal coverage through the following spectral analysis.

Figure B.3: Blocking of speech into overlapping frames [?, fig. 3.39]

The actual algorithm used for dividing a given pre-emphasized signal into L frames of length N
is defined as follows:

xl[n] = s̃[Ml + n], n = 0, 1, ..., N − 1, l = 0, 1, ..., L− 1, (B.6)

with xl[n] denoting the lth frame of speech. The frame blocking has been found to provide the
best result with the frame length N and frame slide M set respectively at 45ms and 15ms at
6.67kHz [?, p. 284].

Windowing

In order to compensate for the signal discontinuities caused by the speech frames overlapping
each of frames will have to be windowed. By windowing each speech frame the discontinuities
at the beginning and end for each frame can be minimized thereby ensuring an approximately
continuous signal. When using autocorrelation to perform the actual LPC-analysis a commonly
used window w[n] is the “Hamming” window. Doing so the algorithm will look as follows:

x̃l[n] = xl[n]w[n] = xl[n](0, 54− 0, 46cos
(2πn
N − 1

)
) 0 ≥ n ≥ N − 1. (B.7)

Autocorrelation Analysis

The first step in extracting the actual LPC-coefficients is to define each windowed speech frames
through a series of m autocorrelations rl(m) ending at the desired order p for the LPC-analysis:

rl(m) =
N−1−m∑

n=0

x̃l[n]x̃l[n+m], m = 0, 1, ..., p. (B.8)

In speech recognition schemes the order p of the LPC-analysis is usually in the range of 8 to 16
with actual value depending on the sample-rate of the speech signal.

When using the autocorrelation in a speech recognition scheme the zeroth autocorrelation rl(0)
of the lth frame is notable as it denotes the energy of that frame. Knowing the energy of each
frame will prove useful in future attempts of endpoint-estimation.

92 Feature Extraction using Linear Predictive Coding

LPC Analysis

The final step in extracting the LPC-coefficients is to convert the p+1 autocorrelation-coefficients
into a set of LPC parameters from which the LPC-coefficients can be read. This procedure is
based on the relationship between the autocorrelation coefficients (rl) and optimal LPC coeffi-
cients (âk):

p∑
k=1

rl(| i− k |)âk = rl(i), 1 ≥ i ≥ p (B.9)

Equation B.9 can also be expressed as a Toeplitz1 matrix to which the Levinson-Durbin algorithm
can provide a solution. This algorithm can best be defined by a series of recursive equation that
must be solved for i = 1, 2, ..., p.

E(0) = rl(0) (B.10)

ki =
{
r(i)−

L−1∑
j=1

αi−1
j rl(| i− j |)

}/
Ei−1 (B.11)

α
(i)
i = ki (B.12)

α
(i)
j = α

(i−1)
j − kiα

(i−1)
i−j (B.13)

E(i) = (1− k2
i)E

i−1 (B.14)

The actual LPC-coefficients am for a given LPC-analysis order p is denoted as:

am = α(p)
m (B.15)

Since the LPC-coefficients are the normalized filter coefficients of the digital filter modeling the
vocal tract the gain σ of this filter can also be determined:

σ =

√
rl(0)
p

(B.16)

LPC Parameter Conversion

One of the major weaknesses of the plain LPC-parameters is their inability to reflect the dis-
tribution of information within the spectral envelope. In order to create a more robust set of
parameters that compensates for this loss the LPC-coefficients will have to be converted into
LPC cepstral coefficients. The cepstral coefficients rely on representing the LPC parameter as
Fourier transform of the log magnitude spectrum and has been proven to be more robust and
reliable than the plain LPC coefficients when used in a recognition scheme. The LPC cepstral
coefficients c can be derived directly from the LPC coefficients a using the following recursion:

c0 = lnσ2 (B.17)

cm = am +
m−1∑
k=1

(k
m

)
ckam−k 1 ≥ m ≥ p (B.18)

cm =
m−1∑
k=1

(k
m

)
ckam−k m > p (B.19)

1Symmetric matrix with all diagonal element equal

B.2 Algorithm for the LPC Front-End Processor 93

The number of LPC cepstral coefficients Q are generally higher than the order of the LPC-
analysis p and values where Q = 3

2p has previously been used successfully [?, p. 116].

Parameter Weighting

LPC cepstral coefficients has the advantage of an increased sensitivity to the lower part of the
spectral envelope and opposed at the higher part. This change in sensitivity spawns a range
of problems. The following two factors are the most severe; the sensitivity of the low-order
coefficients to the overall spectral slope and the high-order coefficients sensitivity to noise. In
order to compensate for these problems it is common practice to weight the cepstral coefficients
thereby minimizing the influence of the sensitivities. These weighted cepstral coefficients ĉm are
achieved is by using a tapered window wm:

ĉm = wmcm, 1 ≥ m ≥ Q (B.20)

The purpose of the tapered window wm is to de-emphasis the upper and lower parts of cm. The
following window has proven suitable:

wm = 1 +
Q

2
sin

(πm
Q

)
, 1 ≥ m ≥ Q. (B.21)

APPENDIX C

Pattern Comparison

This appendix will describe the basics of template-based pattern recognition. It will contain
considerations of distance measurement of speech patterns. This is followed by a description of
a time warping recognizer. Finally connected word recognition is explained.

Finding a reasonable measure will enable an evaluation of the distance between test patterns
and reference patterns and thereby making it possible for the system to make a decision based
on this distance.

In the pattern-based approach to speech recognition, speech is represented by a time sequence
of spectral vectors given by the feature extraction. A test pattern T can be defined as

T = {t1, t2, ... , tI} (C.1)

Each ti is the spectral vector from the input speech at time i and I is the number of frames in
the input speech. Similar, a reference pattern is defined as

Rk = {r1, r2, ... , rJ(k)} (C.2)

where each rj is a spectral vector from the k’th reference pattern at time j and J(k) is the
number of frames in the k’th reference pattern. The reference patterns are also referred to as
templates.

The task is to identify the reference pattern with the minimum distance to the test pattern, and
then associate this with the spoken input. In order to complete this task the following problems
must be addressed:

1. The time duration of T and Rk may differ because the speaking rates may be different.

2. T and Rk may not line up in time in a simple way, because different sounds can not be
varied in duration to the same degree. Vowels are easily lengthened or shortened, while
most consonants can not change dramatically in duration.

3. Comparing pairs of spectral vectors (local distance) is required in order to evaluate the
distortion (global distance) and to facilitate a line up between T and Rk .

Thus a local measure and a method for global time aligning T and Rk must be found, so that the
accumulated local distance between spectral frames in the time-aligned patterns are minimized.

95

96 Pattern Comparison

According to [?, p. 142] global time alignment can be addressed analytically and merged with
the problem of determining a local distance measure, yielding optimal solutions for a wide range
of spectral distance measures.

C.1 Distance Measures

The spectral distance function d between two feature vectors has the form:

d(vi, vj) = dij

{
= 0 if vi = vj

> 0 otherwise
(C.3)

where vi and vj denote the spectral (e.g. feature) vectors. A number of different measures
of the distance between two feature vectors exist. However, usually the method used in the
preprocessing, influences this choice. In speech recognition there is particularly two important
issues to consider when defining a measurement:

1. High degree of mathematical tractability

2. Subjective meaningfulness

Given two feature vectors vi and vj defined on a vector space V , and distance function d defined
as a real-valued function on V , the high degree of mathematical tractability is present, when
the distance function d satisfy the following conditions:

1. 0 ≤ d(vi, vj) <∞ for vi, vj ∈ V and d(vi, vj) = 0 if and only if vi = vj

2. d(vi, vj) = d(vj , vi) for vi, vj ∈ V

3. d(vi, vj) ≤ d(vi, vk) + d(vj , vk) for vi, vj , vk ∈ V

4. d(vi + vk, vj + vk) = d(vi, vj)

With subjective meaningfulness the intention is to derive a measure, which perceptually makes
sense. We’re interested in defining a measure that yields a large distance, when the two sounds
being compared is very different perceptually and a small distance for two sounds which are
very alike. Some of the spectral changes that fundamentally don’t change the perceived sound
are listed below:

1. Spectral tilt: S1(ω) = S2(ω) · ωα, α: the tilt factor

2. Highpass filtering: S1(ω) = S2(ω) · (‖HHP (ejω)‖)2

3. Lowpass filtering: S1(ω) = S2(ω) · (‖HLP (ejω)‖)2

4. Notch filtering: S1(ω) = S2(ω) ·XS · (‖HN (ejω)‖)2

A relatively large distance d(S1, S2) is ideally expected for the following spectral changes:

1. Large differences in formant locations, meaning that the spectral resonances of S1(ω) and
S2(ω) occur at different frequencies.

2. Large differences in formant bandwidths, resulting in different frequency widths of the
spectral resonances of S1(ω) and S2(ω),

C.2 Dynamic Time Warping 97

The distance would be relatively large in order for the subjective meaningfulness to be present.
Unfortunately, both can not be accomplished at the same time and some compromise is needed.
A number of such measures with the mentioned compromise are listed in [?, chapter 4]. It is
considered beyond the scope of this report to give a detailed description of each measure and
their individual differences and the reader should refer to the appropriate literature for further
details.

Based on considerations concerning both the computational complexity and the requirements
for the system to be developed, an Euclidean Distance measure seems a good candidate. The
distance measure is defined as follows:

Euclidean Distance : dE =

√√√√ N∑
n=0

(sn − s′n)2 (C.4)

The Euclidean Distance measure has a rather attractive complexity and holds the mathematical
tractability. On the other hand it is not as desirable - perceptually speaking. The perceptive
lag is considered acceptable because the exact spoken words is not to be recognized - only the
information necessary to decide the correct visemes is needed.

Having found a suitable measure for the distance between speech signals, it must be determined
which method to implement in the recognizer.

C.2 Dynamic Time Warping

The basic idea in DTW is that when comparing two speech patterns, the utterance may vary in
time. The two speech patterns must be time-aligned by “warping” by stretching and shrinking
them, see figure C.1. The optimal warping is the one giving the minimal dissimilarity between
the two patterns.

1

Ty�

1 T
k

iy� = y� (k)

1

Tx

1 T
k

ix = x(k)

Ty�

1

1 Tx

ix

iy�

Figure C.1: Time normalization (or ”warping”) of two patterns into a common time axis [after ?, fig. 4.37].

The warping functions used to map the patterns to a normalized time axis k, are denoted:

ix = φx(k), k = 1, 2, ... , T (C.5)

iy = φy(k), k = 1, 2, ... , T (C.6)

The DTW contains a method to find the optimal path through the distance matrix, and defines
a dissimilarity measure dφ(X,Y) for the path given by φx(k) and φy(k):

dφ(X,Y) =
T∑

k=1

d(φx(k), φy(k))m(k)/Mφ (C.7)

98 Pattern Comparison

where m(k) is a path weighting coefficient and Mφ is a path normalizing factor (explained later).

C.2.1 Input

The DTW compares two speech patternsX and Y , consisting of the feature vectors x1, x2, ... , xTx

and y1 , y2, ... , yTy. The number of feature vectors, Tx and Ty, need not be identical. The
feature vectors can be any vectors derived from the speech signal (e.g. through LPC analysis),
if a (local) distance measure d(ix, iy) is defined for comparing them, see C.1.

C.2.2 Output

The DTW returns a (global) dissimilarity value d(X,Y) = minφ dφ(X,Y) representing the opti-
mal path. By comparing a test pattern to a number of reference patterns this value can be used
to find the best matching reference pattern.

C.2.3 Distance Matrix

When calculating the (global) dissimilarity between two patterns X and Y , the DTW works
on a distance matrix calculated by using the (local) distance measure d(ix, iy) of the feature
vectors. Figure C.2 is an example of a distance matrix calculated from two patterns X and Y ,
consisting of 5 and 4 one-dimensional feature vectors respectively.

4 2 3
�

12

13 11 6 3
�

9 7 2 7

1 1 6 16

1

10

6

2

6

3
�

1

9

2 7 16 3
�

10

Test pattern X

Reference
pattern Y

Distance matrix
calculated by � d(ix, iy�)

�

Figure C.2: Example of a distance matrix. The grey fields in the matrix represent the optimal warping path
through the matrix, when certain warping constraints are used.

Finding the optimal warping is thus the same as finding the optimal path through the distance
matrix.

C.2.4 Warping Constraints

As some paths through the distance matrix are meaningless (e.g. going round in circles), con-
straints for the warping can be defined.

C.2 Dynamic Time Warping 99

This will limit computations as well. [?, p. 208] define the following constraints:

• endpoint constraints

• monotonicity conditions

• local continuity constraints

• global path constraints

• slope weighting

Endpoint Constraints

When the beginning and the end of the patterns to be compared are known, the endpoints are
beginning at φx(1) = 1, φy(1) = 1 and ending at φx(T) = Tx, φy(T) = Ty.

When the endpoints are not known with such accuracy, relaxed endpoint constraints can be
used, where a number of beginning and ending points are used.

In this system the patterns to be recognized (the visemes) are connected and only endpoints of
whole sentences (or a number of words) are known. A method for solving this problem (known
as the connected word recognition) is described later in C.3.

Monotonicity Conditions

The monotonicity condition means that it is not allowed to go back in time. This corresponds
to not allowing going left or down in the distance matrix.

Local Continuity Constraints

These constraints define the legal increments in a path through the distance matrix. The incre-
ments are constrained in a way so that it does not skip any (or almost any) information (feature
vectors) in the patterns. Figure C.3 illustrates eight sets of local constraints from [?, p. 211].
The P ’s in the figure are the allowed (local) paths. Note that a (local) path can consist of several
jumps.

ITAKURA TYPE I TYPE II TYPE III TYPE IV

TYPE V TYPE VI TYPE VII

P
1

P
2

P
3

�

P
1

P
2

P
3

� P
1

P
2

P
3

�

P
1

P
2

P
3

�

P
1

P
2

P
3

�

P
4

P
1

P
2

P
3

�

P4

P5
�

P1

P
2

P3
�

P
1

P2

P3
�

P
4

P5
�

P6
�

P
7

P8
�

P9
�

Figure C.3: Local continuity constraints. Read as ”where came I from”not ”where can I go”[after ?, p. 211].

The Itakura local constraints include a special constraint that disallows two consecutive moves
to the right.

100 Pattern Comparison

The choice of a specific local constraint cannot be made analytically. The constraints perform
different depending on the application. Therefore the choice must be based on experimental
results.

Global Path Constraints

Because the local path has maximum and minimum slopes, the local continuity constraints limit
which coordinates in the distance matrix that can be accessed when calculating the DTW. This
can be used to save computations.

Table C.4 lists maximum and minimum slopes (Qmax and Qmin) for the eight different local
path constraints.

Type Qmax Qmin

I inf 0
II 2 1/2
III 2 1/2
IV 2 1/2
V 3 1/3
VI 3/2 2/3
VII 3 1/3
Itakura 2 1/2

Figure C.4: Maximum and minimum slopes for different types of local path constraints [after ?, p. 214].

Figure C.5 illustrates the global constraints. Additional lines with slope = 1 can be placed with
some distance from the diagonal as range-limiting constraints to further save computations.
However, these range-limiting constraints are only interesting when working with big distance
matrices.

Path

Slope = Q
�

min

Slope = 1
�

Slope = 1
�

Slope = Q
�

min

Slope = Q
�

max

Slope = Q
�

max

Figure C.5: Global path constraints [after ?, p. 215].

Slope Weighting

Slope weighting adds a weight to each allowed path in the local continuity constraints. This
gives the option to prefer some paths compared to other paths. For example, in type 1 local
constraints, the diagonal path could be given a weight of 2 while the remaining paths are given

C.2 Dynamic Time Warping 101

the weight of 1. This would have the effect that one diagonal jump is equally expensive as a
horizontal plus a vertical jump.

Four types of weighting given in [?, p. 216] are:

• Type (a): m(k) = min[jump width, jump height]

• Type (b): m(k) = max[jump width, jump height]

• Type (c): m(k) = jump width

• Type (d): m(k) = jump width + jump height

Jump width is calculated by φx(k) − φx(k − 1), and jump height by φy(k) − φy(k − 1), where
φx(0) = φy(0) = 0 is assumed.

If a path in a local constraint consists of multiple jumps, the weights from each jump can be
redistributed along the path by using their mean value. By doing this, 0 weights can be avoided
(in most cases). This is illustrated in figure C.6.

0

1 1
0

1

1/2

1/2 1
1/2

1/2

1

1 1
1

1

1

1 1
1

1

1

1 1
0

1

1

1 1
1/2

1/2

1

2 2
1

2

3/2
�

3/2
�

2
3/2

�

3/2
�

Type (a)
�

Type (b)
�

Type (c)
�

Type (d)
�

Figure C.6: Slope weighting for the four types of weighting. Weights are shown before and after redistribu-
tion along paths [after ?, p. 218].

C.2.5 Path Normalizing Factor

The purpose of the path normalizing factor Mφ is to make the calculated dissimilarity value
d(X,Y) independent of the lengths of the reference and test patterns. Since the dissimilarity
value in equation. C.7 is a weighted sum, Mφ is chosen to be the sum of the weights:

Mφ =
T∑

k=1

m(k) (C.8)

This gives a normalizing factor that is independent of the warping path for type (c) and (d)
slope weighting. For type (c) Mφ is the sum of the jump widths (Tx). For type (d) Mφ is the
sum of the jump widths and heights (Tx+ Ty).

For type (a) and (b) slope weighting, the normalizing factor depends on the chosen warping
path. One solution to this is to choose a value of Tx that is only reasonable in some cases.
Another solution could be to use path back-tracking to calculate Mφ based on the actual path.

When no slope weighting is used (that is, m(k) = 1), ideally Mφ is set to the number of steps
T [?, p. 292], but this also depends on the chosen warping path, so the problem is the same as
for type (a) and (b).

102 Pattern Comparison

C.2.6 DTW Algorithm

The DTW algorithm is based on dynamic programming, which is a method for solving sequential
decision problems. The general dynamic programming algorithm will not be shown here, but it
is important to mention the principle of optimality:

An optimal policy has the property that, whatever the initial state and decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.
[?, p.205]

For the DTW algorithm a new dissimilarity function, D(Tx, Ty) is defined, where the path
normalizing factor is removed:

Mφd(X,Y) = D(Tx, Ty) = min
φx,φy

T∑
k=1

d(φx(k), φy(k))m(k) (C.9)

A partial dissimilarity function is defined for a path connecting (1, 1) and (ix, iy):

D(ix, iy) = min
φx,φy ,T ′

T ′∑
k=1

d(φx(k), φy(k))m(k) (C.10)

where φx(T ′) = ix and φy(T ′) = iy.

A weighted accumulated distance ψ between point (i′x, i
′
y) and (ix, iy) is defined:

ψ((i′x, i
′
y), (ix, iy)) =

Ls∑
l=0

d(φx(T ′ − l), φy(T ′ − l))m(T ′ − l) (C.11)

where Ls is the number of jumps in the local path, φx(T ′ − Ls) = i′x and φy(T ′ − Ls) = i′y.

The steps in the algorithm are as follows:

1. Initialization:
D(1, 1) = d(1, 1)m(1) (C.12)

2. Recursion:
For 1 ≤ ix ≤ Tx, 1 ≤ iy ≤ Ty, and only within the allowable grid defined by the global
constraints, calculate

D(ix, iy) = min
(i′x,i′y)

[D(i′x, i
′
y) + ψ((i′x, i

′
y), (ix, iy))] (C.13)

3. Termination:
d(X,Y) = D(Tx, Ty)/Mφ (C.14)

C.3 Connected Word Recognition

When recognizing word (or viseme) units in speech, the units to be recognized are usually
connected, i.e. there is no silence between them and thus there is no (simple) way to detect their
boundaries. The standard DTW algorithm is only meant for isolated word recognition and can
not be used alone for connected words. Several methods for solving the task of connected word
recognition have been proposed. In the following the problem in general will be described and a
specific solution known as the one-pass (or one-state or one-stage) algorithm will be presented.

C.3 Connected Word Recognition 103

C.3.1 The Super-Reference Pattern

The task of connected word recognition can be described as the task of finding the super-reference
pattern,

RS = {Rq(1) ⊕Rq(2) ⊕ ...⊕Rq(L)} (C.15)

that is, finding the best matching sequence of reference patterns (represented by q(1)...q(L)).

This task can be solved in a brute-force way by evaluating the super-reference pattern using
the standard DTW algorithm described in the previous section, and comparing the dissimilarity
values for every possible combinations of reference patterns and every number of reference pat-
terns L between Lmin and Lmax (where Lmin and Lmax is the minimum and maximum expected
number of words to be recognized).

If K is the number of reference patterns, then the number of possible combinations of local
reference patterns is KL, which is a highly undesired complexity (except for very small values
of K and L). This clearly shows the need for an alternative way of solving the connected word
recognition problem.

C.3.2 The One-Pass Algorithm

The following is mainly based on [?]. The one-pass algorithm is easiest described as an extension
of the DTW-algorithm. Instead of time-warping only one reference pattern, the warping is now
done to all reference patterns simultaneously, as shown in figure C.7. As in the DTW, the path
is not known during the warping. First when the end of the test pattern is reached, the path can
be found by using path backtracking. Note that the goal of the algorithm, however, is different
than the goal of the DTW. The DTW gave a dissimilarity score. In the one-pass algorithm
the score itself is not interesting. It is the warping path, which is used to find the transitions
between the reference patterns (which are words or visemes).

R
1

R
2

R3
�

...

RK

R
E

F
E

R
E

N
C

E
 P

A
T

T
E

R
N

S

1 I

TEST PATTERN

i

1

J(1)
�

j
�

1

J(2)
�

j
�

1

j
�

J(3)
�

1

j
�

J(k)
�

1

j
�

J(K)
�

Rk

...

Figure C.7: The one-pass algorithm. The time-warping is done in all reference patterns simultaneously [after
?, p. 43].

The local dissimilarity in the one-pass algorithm is denoted as:

d(i, j, k) (C.16)

104 Pattern Comparison

where the reference patterns are indexed by k = 1, ...,K, the time frames of the reference pattern
k are denoted as j = 1, ..., J(k), and the time frames of the test patterns are referenced by the
index i = 1, ..., I (The local dissimilarity is calculated with the chosen dissimilarity measure as
in the DTW).

Similarly, the minimum accumulated distance to the point (i, j, k) is denoted as:

D(i, j, k) (C.17)

When warping inside a reference pattern k, the operations of the one-pass algorithm are similar
to the DTW. The minimum accumulated distance is calculated by choosing a predecessor with
the minimum accumulated distance:

D(i, j, k) = d(i, j, k) +min[D(i− 1, j, k), D(i− 1, j − 1, k), D(i, j − 1, k)] (C.18)

The path constraints of the above equation corresponds to the TYPE I local path constraints
of the DTW.

At the boundary of the reference pattern (i.e. at j = 1), a special path constraint is used, as
illustrated in figure C.8.

Inside reference
pattern

Between reference
patterns

1 i I

1

J(k)
�

j
�

1 i I

1

J(k')
�

J(k)
�

1

Figure C.8: Different path constraints are used when inside and when between the reference patterns [after
?, p. 3].

Either a predecessor from the same reference pattern which is one test time frame to the left
will be chosen, or a predecessor from the ending reference time frame one frame to the left of
the reference pattern with the lowest accumulated dissimilarity will be chosen:

D(i, 1, k) = d(i, 1, k) + min[D(i− 1, 1, k),min
k′

[D(i− 1, J(k′), k′)]] (C.19)

C.3 Connected Word Recognition 105

The steps of the one-pass algorithm with the path constraints described above are as follows:

1. Initialization:

D(1, j, k) =
j∑

n=1

d(1, n, k) (C.20)

2. Warping:

For 2 ≤ i ≤ I, calculate

For 1 ≤ k ≤ K, calculate

D(i, 1, k) = d(i, 1, k) + min[D(i− 1, 1, k),
min

k′
[D(i− 1, J(k′), k′)]] (C.21)

For 2 ≤ j ≤ J(k), calculate

D(i, j, k) = d(i, j, k) + min[D(i− 1, j, k),
D(i− 1, j − 1, k), D(i, j − 1, k)] (C.22)

End j

End k

End i

3. Path back-tracking:
Find ending reference pattern with minimum total distance

Rend = min
k′

[D(I, J(k′), k′)] (C.23)

Use back-pointers to do the back-tracking. At reference pattern transitions save the in-
teresting information: the test frame (time) index i and the reference pattern number
k.

The one-pass algorithm can be implemented with different path constraints than the ones shown
above (e.g. the constraints shown in [?, p. 419]). Some memory requirements optimizations are
possible, syntactic constraints can also be incorporated, see [?]. These topics will not be covered
here.

APPENDIX D

The Strategy Design Pattern

This appendix will describe the strategy design pattern. For more in depth information see [?,
p.315-324].

D.1 Motivation

The motivation for the use of this design pattern is the wish to have multiple algorithms in a
program depending on the situation at hand. This is best illustrated through a small example.

When solving a problem there is normally several algorithms that can do the job. Each of the
algorithms normally has their strengths and weaknesses. For instance there could be from 1 to
n algorithms to solve the problem at hand. The goal of this design pattern is then to make all
of the n algorithms available to the program through a simple interface. Hence not all of the
algorithms needs to hardwire in to the program and it only needs one of the algorithms, but the
program can then specify which one it needs. This is called a strategy.

The strategy design pattern should be used when:

• Many related classes differ only in their behavior. Strategies provide a way to configure a
class with one of many behaviors.

• There is need for different variants of an algorithm. Strategies can be used when these
variants are implemented as a class hierarchy of algorithms.

• An algorithm uses data that clients shouldn’t know about. Use strategy pattern to avoid
exposing complex, algorithm-specific data structures.

• A class defines many behaviors and these appear as multiple conditional statements in its
operations. Instead of many conditionals move related conditional branches into their own
strategy class.

107

108 The Strategy Design Pattern

The structure of the Strategy design pattern is shown in figure D.1

Strategy

 AlgorithmInterface()

Context

 ContextInterface()

ConcretStrategyA

 AlgorithmIInterfaceA()

ConcretStrategyC

 AlgorithmIInterfaceC()

ConcretStrategyB

 AlgorithmIInterfaceB()

Strategy

Figure D.1: Structure of the design.

There is the following participants in this design pattern:

Strategy: declares an interface common to all supported algorithms. Context uses this interface
to call the algorithm defined by ConcreteStrategy.

ConcreteStrategy: implements the algorithm using the Strategy interface.

Context: is configured with a ConcreteStrategy object and it maintains a reference to a Strat-
egy object. Furthermore it may define an interface that lets Strategy access its data.

There are the following interactions in this design pattern:

• Strategy and Context interact to implement the chosen algorithm. A context may pass all
data required by the algorithm to the strategy when the algorithm is called. Alternatively
the context can pass itself as an argument to Strategy operations. That lets the strategy
call back on the context as required.

• A context forwards requests from its clients to its strategy. Clients usually create and pass
a ConcreteStrategy object to the context. Thereafter clients interact with the context
exclusively. There is often a family of ConcreteStrategy classes for a client to choose from.

APPENDIX E

Training Methods

In this appendix the various methods for training of pattern-recognition based recognizers will
be explained.

E.1 Casual Training

In casual training each utterance class is represented by several reference patterns. Normally
all spoken tokens during the training session are used as reference patterns. This leads to the
following characteristics:

1. Simple template training procedure

2. The number of utterance classes in the vocabulary should not be too many

3. Works only with a speaker-trained system (speaker dependent)

4. No attempt to estimate the pattern variability

5. Errors committed in training (improper articulation, mispronounciation etc.) are accepted
as valid reference patterns (no use of threshold)

E.2 Robust Training

In robust training the reference patterns are created from a concept called consistent pairs. The
term “consistent pair” will be described in the following. The training is performed as described
in these steps:

1. Let X1 = (x11, x12, ... , x1T1) and X2 = (x21, x22, ... , x2T2) be two patterns that are
being compared via DTW.

2. The DTW distortion score d(X1, X2) is compared to a threshold ε . If the score is smaller
than ε, X1 and X2 is accepted as a consistent pair. Else a new pattern X3 must be
introduced (possibly also X4 and X5 and so on).

3. The reference pattern Y = (y1, y2, ... , yTy) is computed as the warped average of X1 and
X2, where yk = 1

2(x1φ1(k) + x2φ2(k)), k = 1, 2, ... , Ty

109

110 Training Methods

The characteristics of the robust training procedure can be seen below:

1. The training could be cumbersome depending on the value of the threshold ε

2. Works only with a speaker-trained system (speaker dependent)

3. Given a set of pre-recorded and digitized training data it is critical that consistent pairs
can be found from these data

4. Simple and efficient in term of computation and storage

5. Inadequate for words having more than one mode (i.e.. words with released stops)

E.3 Clustering

In this procedure the starting point is a set of L speech patterns, each a realization of the same
utterance class. These L patterns is then clustered into N clusters, satisfying that within each
cluster the patterns are highly similar with respect to the specific chosen dissimilarity measure.
The result is N representative templates from a set of L training patterns for each utterance
class. Two different clustering algorithms are commonly used, but before these will be examined
some basic mathematic definitions should be introduced.

Let Ω = {X1, X2, ... , XL} denote a set of L training patterns, each Xi being a realization of
a specific utterance class. An L x L distance matrix D can now be defined with ijth entry dij

given by:

dij =
1
2
[d(Xi, Xj) + d(Xj , Xi)] = δ(Xi, Xj) (E.1)

In order to cluster the training set Ω into N disjoint clusters {ωi, i = 1, 2, ... , N} so that

Ω =
N⋃

i=1

ωi (E.2)

and such that the speech patterns in corresponding clusters are very similar, the solutions for
{ωi}N

i=1 must be computed. Each cluster ωi is represented by a representative pattern Y (ωi) , Yi.
Note however that Yi is not necessarily a member of ωi.

E.3.1 Unsupervised Clustering Without Averaging (UWA)

The concept of unsupervised clustering is given in the five steps below:

1. Identify the largest cluster

2. Determine all training patterns close to the “center” of this cluster

3. Exclude these patterns from the training set

4. Recluster the remaining patterns

5. Iterate

Let Ωj represent the partial set that includes the training patterns up to the jth cluster, then

Ωj =
j⋃

i=1

ωi = Ωj−1 + ωj (E.3)

E.3 Clustering 111

and hence the complement set
Ωj = Ω− Ωj (E.4)

is then the set consisting of all remaining patterns after the jth cluster. As it was stated in step
5 the UWA is iterative and in the following k is the iteration index. Let ωk

j denote the set of
patterns in the jth cluster at the kth iteration. Then for every cluster ω, a min-max “center”
Y (ω) = Xic ∈ ω is defined such that

max
m

dic, m = min
i

max
m

di, m (E.5)

for all Xi ∈ ω. This means that the min-max “center” of a set is the pattern with the smallest
maximum distance to all the remaining patterns. The UWA algorithm steps can be found in [?,
p. 269-270]. It should be noted that the exclusion in step 3 requires a distance threshold which
can not be optimized in any analytical manner. Furthermore the algorithm does not guarantee
100% coverage of the training.

E.3.2 Modified K-Means Algorithms (MKM)

In this algorithm the clusters and cluster centers (centriods) are iteratively refined until an
optimality requirement is satisfied. In the following the algorithm is explained.

Let ωk
j,i denote the ith cluster of a j-cluster set at the kth iteration. The range of the cluster sum-

mation index variable is i = 1, 2, ..., j and the iteration index variable range is k = 1, 2, ..., kmax,
where kmax is the maximum allowed iteration count. Y (ω) is defined as the centriod (the
min-max center) of ω and denotes the representative pattern for the cluster ω. The algorithm
determines j clusters incrementally from j = 1 to j = jmax, jmax being the desired maximum
number of clusters to be determined. Assuming the distance matrix D is to be precomputed,
the algorithm is as follows:

1. Initialize: j, i, k = 1, ω1
1,1 = Ω and compute centriod Y (ω) of Ω

2. Optimal minimum distance classification: Each pattern Xl, l = 1, 2, ..., L in Ω is labeled
by index i according to the minimum distance principle:

Xl ∈ ωk
j,i if δ(Xl, Y (ωk

j,i)) = minl′δ(Xl, Y (ωk
j,i′)) (E.6)

Sum the total intracluster distance for each cluster ωk
j,i′ , defined as:

∆j
i =

∑
δ(Xl, Y ω

k
j,i) (E.7)

The summation is overall Xl ∈ ωk
j,i.

3. Revision of clusters and centroids: Form ωk+1
j,i by grouping all Xl’s with label i retrieved

from step 2. Compute new centroids for ωk+1
j,i , fori = 1, 2, ..., j

4. Convergence test: Goto 5 if one of these is fulfilled:

• ωk+1
j,i = ωk

j,i for all i = 1, 2, ..., j

• k = kmax: maximum iteration count reached

• Change in average (or total accumulated) distance is below predefined threshold ∆th

else k + + and repeat step 2 - 4.

5. Record the j-cluster solution: Given convergence has been reached, the resultant clusters
and centroids, ωk

j,i and Y (ωk
j,i), i = 1, 2, ..., j are the j-cluster solution for the training set

Ω.

A flow diagram for the algorithm can be found in [?, p. 272]

112 Training Methods

E.3.3 Characteristics of the Clustering Method

Based on the previous the clustering method possesses the following characteristics:

1. Speaker-independent

2. Dependent in a higher degree on choice of spectral distance measure than other training
procedures

3. The templates are statistical consistent

4. Robust to a wide range of individual speech variations in a speaker-independent environ-
ment

5. Higher recognition accuracy is achieved in practical tasks

APPENDIX F

Viseme Format

This chapter will discuss phonemes and visemes for practical use in an application. The result
will be a set of visemes and a system for mapping a stream of phonemes into a stream of
visemes. The reader is advised to consider the phoneme examples by uttering the phonemes
while exaggerating the articulation.

F.1 Phonemes - From a Visual Point of View

SAMPA [?] is a well known and documented standard of phonemes. It is used in the EUROM1
database, which is used as training data for ALSAC. As discussed in chapter 2 each viseme can
be mapped into a viseme-map based on their roundness and openness. Unfortunately, not all
phonemes can be mapped into the same map because of the context and speaker dependence.
Simple guidelines for mapping will be considered below.

The vowels are consistent in openness and roundness thereby giving a solid ground for construc-
tion of a visemes map. Phonology describes a vowel triangle in which the vowels are mapped
according to roundness and openness. The vowels defined in SAMPA is shown in table F.1

Rounded Unrounded
Closed

y u i
2 o @ e
9 O E
Q {

a
A

Open

Table F.1: Vowel in SAMPA ordered by openness and roundness.

However, the mapping of consonants are not that simple. The vowel affects the surrounding
consonants within a given syllable. This is because the generation of many consonants are
performed far behind the lips and further down in the pharynx tract. For example /g/ and /k/
are produced in the throat, while /l/ and /n/ is produced using the tongue. Thus, the roundness
of the consonants does not affects the roundness of the syllable and are used only to smoothen
the movements of the lips between two vowels. Regarding openness the consonants labials, such

113

114 Viseme Format

as /b/ and /m/, have closed lips. The rest are mid-open and details such as teeth and tongue
distinguish the different consonants. The consonants defined by SAMPA is shown in table F.2

Phoneme Visualization
p m b Bi-labials: lips shut
f v Labio-dentals: bite lower lip
D tongue behind teeth
j teeth show, tongue hidden
s teeth show, tongue hidden
t n d teeth slightly open, tongue up
k N g R upper teeth show, tongue drawn back
l teeth open, tongue up

Table F.2: Identification of visemes for consonants in SAMPA.

F.2 Visemes in Animations

The MPEG4 standard includes a standard for face animation [?]. This includes animation of
the mouth. In the MPEG4 standard each phoneme is mapped to a viseme. The phonemes used
in MPEG4 are the most common English phonemes, which are shown in table F.3.

Viseme Phonemes Example
0 none
1 p, b, m put, bed, mill
2 f, v far, voice
3 T,D think, that
4 t, d tip, doll
5 k, g call, gas
6 tS, dZ, S chair, join, she
7 s, z sir, zeal
8 l, n lot, not
9 r red
10 A: car
11 e bed
12 I tip
13 Q top
14 U book

Table F.3: MPEG4’s phoneme to viseme mapping.

This ambiguous mapping is not the ideal way to do it, but it is an often-used method, because
it is a simple way to generate a set of visemes. Each of the visemes in MPEG4 is a vector-
based guideline for the final image. In addition expressions can be added to the viseme. The
transitions from one viseme to the next are defined by blending the two visemes with a weighting
factor. Context dependence makes this system inadequate for lip-reading and perfect natural
animation.

The viseme map used by ALSAC is composed of fixed images. ITE provided a set of 16 basic
images, which is found to be inadequate for the wide range of phonemes. The viseme set has
been modified to fit the phonemes of MPEG4 in figure F.2.

A vowel affects the surrounding consonants within a syllable. If the viseme set only consists of one
viseme for each consonant the consonants ought to be placed in the center of the viseme map.
Anyhow, this would lead to a terrible animation if two subsequent syllables contain rounded

F.2 Visemes in Animations 115

Figure F.1: Viseme set adapted for MPEG4.

116 Viseme Format

vowels, while the consonants between those vowels are unrounded. In order to smoothen the
animation one can use two visemes for each consonant - a rounded and an unrounded. This is the
basis for the extended viseme set used by ALSAC. The set is shown in table F.4 where rounded
consonants are represented by the prefix a. The new viseme map using the double consonant
system is shown in figure F.2. Note that the phoneme /h/ does not have a corresponding viseme
because the visualization of /h/ depends directly upon the following viseme. This means that
the viseme for ’h’ will be the same as the following viseme thereby in reality the stretching the
duration of this viseme.

Figure F.2: Viseme set adapted to phonemes of ALSAC.

F.3 Phoneme to Viseme Conversion 117

Viseme Style Phonemes
0 S .
1 C u p m b
2 C u f v
3 C u D
4 C u t d
5 C u k g R N
6 C u j
7 C u s
8 C u l n
9 V r Y y 2 9
10 V u a {
11 V u A E e
12 V u i
13 V r @ o O Q
14 V r u
15 R h
1a C r p m b
2a C r f v
3a C r D
4a C r t d
5a C r k g R N
6a C r j
7a C r s
8a C r l n

Table F.4: SAMPA phonemes mapped to visemes in F.2.
C: Consonant, V: Vowel
u: Unrounded mouth, r: Rounded mouth
R: repeat

F.3 Phoneme to Viseme Conversion

The training and test data used during the development of ALSAC is from the phoneme database
EUROM1. ALSAC is supposed to be trained using viseme labeled data, but the data in EU-
ROM1 is phoneme labeled. Thus, the phonemes in EUROM1 have to be converted to visemes.

A perfect conversion would require either a manual conversion by an expert or artificial intelli-
gence that emulates the thought patterns used for manual conversion. Due to the objectives of
this project and the lack of time a suboptimal solution will be designed.

The conversion is performed mapping phonemes to visemes according to table F.4. The fact
that the viseme map has two visemes for each consonant complicates the conversion, because it
has to be determined which version to use. It was stated previously that the consonant viseme
depends on the vowel within the syllable. Thus, it is necessary to detect each syllable. This fact
leads to a theory about how syllables are constructed. A syllable is composed as illustrated in
figure F.3.

The essence is that a syllable must be constructed by selecting phonemes from left to right in the
figure; e.g. unvoiced / nasal / vowel / semivowel / lateral (like “snail”). As illustrated syllables
may not contain all groups from the figure but they must appear in that order.

For example an invalid syllable /s//t//A//t//r/ (unvoiced / unvoiced / vowel / unvoiced /
semivowel). A correct syllable is /s//d//A://t/ that is (unvoiced / voiced / vowel / unvoiced).
The most significant observation is that the vowels are centered between the consonants.

118 Viseme Format

Unvoiced
consonant

Voiced
consonant

Nasal

Lateral

Unvoiced
consonant

Voiced
consonant

Nasal

Lateral

Semi

vowel

Vowel

Semi

vowel

CenterSyllable edge Syllable edge

Syllable

IIIIIIIV I II III IV

Figure F.3: Universal composition of a syllable [after ?, p. 138].

A major drawback of the method is that it is unable to determine whether a consonant between
two syllables belongs to the first or the last syllable. If for instance the last consonant in the
first syllable is voiced and the first two consonants in syllable two are an unvoiced and a voiced
consonant, it is not possible to determine whether the unvoiced consonant belongs to the first
or second syllable.

Since it is not possible to determine the above it has been chosen to make a simpler detection
which is presented in the following.

F.3.1 Simple Method for Phoneme to Viseme Conversion

The simple method for phoneme to viseme conversion is based upon the assumption that the
consonants are distributed equally over the syllables in an infinitely long text. This means that
there are the same number of consonants on both sides of a separation of two syllables. Of
course this assumption is false at least when considering single words such as “de-scribe” and
“di-stri-bute”, where it is one phoneme that will be assigned wrongly. However, in many cases
it will be true e.g. “num-ber” and “far-mer”.

The algorithm using the simple principle of conversion from phonemes to visemes does as follows:

Procedure (illustrated in figure F.4):

1. Read next phoneme

2. If phoneme equals /h/ convert to next viseme.

3. If phoneme is a vowel then count the number of consonants coming afterwards. Note the
phoneme ending the series of consonants:

a If last phoneme is silence then X=number of consonants

b If last phoneme is a vowel then X=number of consonants/2 rounded down

c If the vowel is rounded then set flag

4. If phoneme is a consonant then convert phoneme to viseme

a If X is defined subtract 1 from X

If flag is set convert viseme to rounded type (prefix a)

b Else if the next vowel is rounded convert the viseme to rounded type (prefix a)

F.3 Phoneme to Viseme Conversion 119

This method is almost as good as the one represented in figure F.3 all through it has one flaw
compared to the other. As mentioned above it might assign one or more consonants to the
wrong syllable. This would for instance happen if the first syllable has no ending consonants
while the second syllable has three or four beginning consonants.

Whether this will cause a noticeable decrease in animation quality shall remain unsolved until
the final visual test.

'5'

cactus1.

Rule 4b

 '5' '11'

cactus2.

Rule 3c

 '5' '11' '5' '4a'

4.

Rule 4b

cactus

'5' '11' '5' '4a' '14'

5.

Rule 3b

cactus

Pointer/
look

ahead

Rule used
in step

Temporary
viseme
stream '5' '11' '5'

3.

Rule 4a

'5' '11' '5' '4a' '14' '7a'

6.

Rule 4a

cactus

cactus

X=2/2=1, no flag X=X-1=0, no flag

X=1, flag X=X-1=0, no flag

X value,
flag status
�

Figure F.4: Illustration of the algorithm used to convert an EUROM1 phoneme stream into an ALSAC
viseme stream.

APPENDIX G

Test Sheets

The system should graded with the grades 1 to 5. Where 5 is the best score and 1 is the lowest
score.

Speaker 1

Test part Grade

A1
B1
C1

Table G.1: Speaker 1

Speaker 2

Test part Grade

A2
B2
C2

Table G.2: Speaker 2

Speaker 3

Test part Grade

A3
B3
C3

Table G.3: Speaker 3

121

